

Programming Elixir ≥ 1.6
Functional |> Concurrent |> Pragmatic |> Fun

Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-299-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Foreword ix
A Vain Attempt at a Justification, Take Two xi

1. Take the Red Pill 1
Programming Should Be About Transforming Data 1
Installing Elixir 3
Running Elixir 4
Suggestions for Reading the Book 10
Exercises 10
Think Different(ly) 11

Part I — Conventional Programming

2. Pattern Matching 15
Assignment: I Do Not Think It Means What You Think
It Means. 15
More Complex Matches 16
Ignoring a Value with _ (Underscore) 18
Variables Bind Once (per Match) 18
Another Way of Looking at the Equals Sign 20

3. Immutability 21
You Already Have (Some) Immutable Data 21
Immutable Data Is Known Data 22
Performance Implications of Immutability 23
Coding with Immutable Data 24

4. Elixir Basics 25
Built-in Types 25
Value Types 26

System Types 28
Collection Types 28
Maps 31
Binaries 32
Dates and Times 33
Names, Source Files, Conventions, Operators, and So On 34
Variable Scope 36
End of the Basics 40

5. Anonymous Functions 41
Functions and Pattern Matching 42
One Function, Multiple Bodies 43
Functions Can Return Functions 45
Passing Functions as Arguments 47
Functions Are the Core 51

6. Modules and Named Functions 53
Compiling a Module 53
The Function’s Body Is a Block 54
Function Calls and Pattern Matching 55
Guard Clauses 58
Default Parameters 60
Private Functions 63
The Amazing Pipe Operator: |> 63
Modules 65
Module Attributes 67
Module Names: Elixir, Erlang, and Atoms 68
Calling a Function in an Erlang Library 69
Finding Libraries 69

7. Lists and Recursion 71
Heads and Tails 71
Using Head and Tail to Process a List 72
Using Head and Tail to Build a List 74
Creating a Map Function 75
Reducing a List to a Single Value 76
More Complex List Patterns 78
The List Module in Action 81
Get Friendly with Lists 82

Contents • iv

8. Maps, Keyword Lists, Sets, and Structs 83
How to Choose Between Maps, Structs, and Keyword Lists 83
Keyword Lists 84
Maps 84
Pattern Matching and Updating Maps 85
Updating a Map 87
Structs 88
Nested Dictionary Structures 89
Sets 95
With Great Power Comes Great Temptation 95

9. An Aside—What Are Types? 97
10. Processing Collections—Enum and Stream 99

Enum—Processing Collections 99
Streams—Lazy Enumerables 103
The Collectable Protocol 110
Comprehensions 111
Moving Past Divinity 114

11. Strings and Binaries 117
String Literals 117
The Name “strings” 120
Single-Quoted Strings—Lists of Character Codes 121
Binaries 123
Double-Quoted Strings Are Binaries 124
Binaries and Pattern Matching 130
Familiar Yet Strange 132

12. Control Flow 133
if and unless 133
cond 134
case 137
Raising Exceptions 138
Designing with Exceptions 138
Doing More with Less 139

13. Organizing a Project 141
The Project: Fetch Issues from GitHub 141
Step 1: Use Mix to Create Our New Project 142
Transformation: Parse the Command Line 145
Write Some Basic Tests 146

Contents • v

Refactor: Big Function Alert 149
Transformation: Fetch from GitHub 149
Step 2: Use Libraries 151
Transformation: Convert Response 156
Transformation: Sort Data 158
Transformation: Take First n Items 159
Transformation: Format the Table 160
Step 3: Make a Command-Line Executable 163
Step 4: Add Some Logging 164
Step 5: Create Project Documentation 166
Coding by Transforming Data 167

14. Tooling 169
Debugging with IEx 169
Testing 173
Code Dependencies 186
Server Monitoring 187
Source-Code Formatting 190
Inevitably, There’s More 193

Part II — Concurrent Programming

15. Working with Multiple Processes 197
A Simple Process 198
Process Overhead 203
When Processes Die 206
Parallel Map—The “Hello, World” of Erlang 210
A Fibonacci Server 211
Agents—A Teaser 215
Thinking in Processes 216

16. Nodes—The Key to Distributing Services 219
Naming Nodes 219
Naming Your Processes 223
Input, Output, PIDs, and Nodes 226
Nodes Are the Basis of Distribution 228

17. OTP: Servers 229
Some OTP Definitions 229
An OTP Server 230
GenServer Callbacks 238

Contents • vi

Naming a Process 240
Tidying Up the Interface 240
Making Our Server into a Component 242

18. OTP: Supervisors 247
Supervisors and Workers 247
Worker Restart Options 254
Supervisors Are the Heart of Reliability 255

19. A More Complex Example 257
Introduction to Duper 257
The Duper Application 262
But Does It Work? 272
Planning Your Elixir Application 274
Next Up 275

20. OTP: Applications 277
This Is Not Your Father’s Application 277
The Application Specification File 278
Turning Our Sequence Program into an OTP Application 278
Supervision Is the Basis of Reliability 281
Releasing Your Code 282
Distillery—The Elixir Release Manager 282
OTP Is Big—Unbelievably Big 292

21. Tasks and Agents 293
Tasks 293
Agents 295
A Bigger Example 297
Agents and Tasks, or GenServer? 300

Part III — More Advanced Elixir

22. Macros and Code Evaluation 303
Implementing an if Statement 303
Macros Inject Code 304
Using the Representation as Code 307
Using Bindings to Inject Values 312
Macros Are Hygienic 313
Other Ways to Run Code Fragments 314
Macros and Operators 315

Contents • vii

Digging Deeper 316
Digging Ridiculously Deep 316

23. Linking Modules: Behavio(u)rs and use 319
Behaviours 319
use and __using__ 322
Putting It Together—Tracing Method Calls 322
Use use 326

24. Protocols—Polymorphic Functions 329
Defining a Protocol 329
Implementing a Protocol 330
The Available Types 331
Protocols and Structs 332
Built-in Protocols 333
Protocols Are Polymorphism 345

25. More Cool Stuff 347
Writing Your Own Sigils 347
Multi-app Umbrella Projects 351
But Wait! There’s More! 354

A1. Exceptions: raise and try, catch and throw 355
Raising an Exception 355
catch, exit, and throw 357
Defining Your Own Exceptions 358
Now Ignore This Appendix 359

A2. Type Specifications and Type Checking 361
When Specifications Are Used 361
Specifying a Type 362
Defining New Types 364
Specs for Functions and Callbacks 365
Using Dialyzer 366

Bibliography 373
Index 375

Contents • viii

Foreword
I have always been fascinated with how changes in hardware affect how we
write software.

A couple of decades ago, memory was a very limited resource. It made sense
back then for our software to take hold of some piece of memory and mutate
it as necessary. However, allocating this memory and cleaning up after we
no longer needed it was a very error-prone task. Some memory was never
freed; sometimes memory was allocated over another structure, leading to
faults. At the time, garbage collection was a known technique, but we needed
faster CPUs in order to use it in our daily software and free ourselves from
manual memory management. That has happened—most of our languages
are now garbage-collected.

Today, a similar phenomenon is happening. Our CPUs are not getting any
faster. Instead, our computers get more and more cores. This means new
software needs to use as many cores as it can if it is to maximize its use of
the machine. This conflicts directly with how we currently write software.

In fact, mutating our memory state actually slows down our software when
many cores are involved. If you have four cores trying to access and manipu-
late the same piece of memory, they can trip over each other. This potentially
corrupts memory unless some kind of synchronization is applied.

I quickly learned that applying this synchronization is manual, error prone,
and tiresome, and it hurts performance. I suddenly realized that’s not how I
wanted to spend time writing software in the next years of my career, and I
set out to study new languages and technologies.

It was on this quest that I fell in love with the Erlang virtual machine and
ecosystem.

In the Erlang VM, all code runs in tiny concurrent processes, each with its
own state. Processes talk to each other via messages. And since all communi-
cation happens by message-passing, exchanging messages between different

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

machines on the same network is handled transparently by the VM, making
it a perfect environment for building distributed software!

However, I felt there was still a gap in the Erlang ecosystem. I missed first-class
support for some of the features I find necessary in my daily work—things such
as metaprogramming, polymorphism, and first-class tooling. From this need,
Elixir was born.

Elixir is a pragmatic approach to functional programming. It values its func-
tional foundations and it focuses on developer productivity. Concurrency is
the backbone of Elixir software. As garbage collection once freed developers
from the shackles of memory management, Elixir is here to free you from
antiquated concurrency mechanisms and bring you joy when writing concur-
rent code.

A functional programming language lets us think in terms of functions that
transform data. This transformation never mutates data. Instead, each
application of a function potentially creates a new, fresh version of the data.
This greatly reduces the need for data-synchronization mechanisms.

Elixir also empowers developers by providing macros. Elixir code is nothing
more than data, and therefore can be manipulated via macros like any other
value in the language.

Finally, object-oriented programmers will find many of the mechanisms they
consider essential to writing good software, such as polymorphism, in Elixir.

All this is powered by the Erlang VM, a 20-year-old virtual machine built from
scratch to support robust, concurrent, and distributed software. Elixir and
the Erlang VM are going to change how you write software and make you
ready to tackle the upcoming years in programming.

José Valim
Creator of Elixir

Tenczynek, Poland, October 2014

Foreword • x

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

A Vain Attempt at a Justification, Take Two
I’m a language nut. I love trying languages out, and I love thinking about
their design and implementation. (I know; it’s sad.)

I came across Ruby in 1998 because I was an avid reader of comp.lang.misc
(ask your parents). I downloaded it, compiled it, and fell in love. As with any
time you fall in love, it’s difficult to explain why. It just worked the way I work,
and it had enough depth to keep me interested.

Fast-forward 15 years. All that time I’d been looking for something new that
gave me the same feeling.

I came across Elixir a while back, but for some reason never got sucked in.
But a few months before starting on the first edition of this book, I was
chatting with Corey Haines. I was bemoaning the fact that I wanted a way to
show people functional programming concepts without the academic trappings
those books seem to attract. He told me to look again at Elixir. I did, and I
felt the same way I felt when I first saw Ruby.

So now I’m dangerous. I want other people to see just how great this is. I want
to evangelize. So I write a book. But I don’t want to write another 900-page
Pickaxe book. I want this book to be short and exciting. So I’m not going into
all the detail, listing all the syntax, all the library functions, all the OTP
options, or….

Instead, I want to give you an idea of the power and beauty of this program-
ming model. I want to inspire you to get involved, and then point to the online
resources that will fill in the gaps.

But mostly, I want you to have fun.

Fast-forward three years. Elixir has moved on. Phoenix, its connectivity frame-
work, introduced a whole new set of developers to the joys of a functional
approach. The Nerves project makes it easy to write embedded Elixir code on
Linux-based microcontrollers. The Elixir base has grown—there are interna-
tional, national, and regional conferences. Job ads ask for Elixir developers.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

I’ve been moving on, too. But I’m still using Elixir daily. I just completed my
second year as an adjunct professor at Southern Methodist University, cor-
rupting the programmers of tomorrow with the temptations of Elixir. I’ve
written an online Elixir course.1

And now I’m revving this book. To be honest, I don’t really have to: Elixir 1.6
is not so different from 1.3 that the older book would not be useful. But my
own thinking about Elixir has matured. I now do some things differently. And
I’d like to share these things with you.

Acknowledgments
It seems to be a common thread—the languages I fall in love with are created
by people who are both clever and extremely nice. José Valim, the creator of
Elixir, takes both of these adjectives to a new level. I owe him a massive thank-
you for giving me so much fun over the last 18 months. Along with him, the
whole Elixir core team has done an amazing job of cranking out an entire
ecosystem that feels way more mature than its years. Thank you, all.

A conversation with Corey Haines reignited my interest in Elixir—thank you,
Corey, for good evenings, some interesting times in Bangalore, and the
inspiration.

Bruce Tate is always an interesting sounding board, and his comments on
early drafts of the book made a big difference. And I’ve been blessed with an
incredible number of active and insightful beta readers who have made liter-
ally hundreds of suggestions for improvements. Thank you, all.

A big tip of the hat to Jessica Kerr, Anthony Eden, and Chad Fowler for letting
me steal their tweets.

Kim Shrier seems to have been involved with my writing since before I started
writing. Thanks, Kim, for another set of perceptive and detailed critiques.

Candace Cunningham again amazed me with her detailed copy editing: it’s
rare to find someone who can correct both your grammar and your code. The
crew at Potomac did their customary stellar job of indexing.

Dave Thomas

dave@pragdave.me
Dallas, TX, April 2018

1. https://codestool.coding-gnome.com

A Vain Attempt at a Justification, Take Two • xii

report erratum • discuss

https://codestool.coding-gnome.com
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 1

Take the Red Pill
The Elixir programming language wraps functional programming with im-
mutable state and an actor-based approach to concurrency in a tidy, modern
syntax. And it runs on the industrial-strength, high-performance, distributed
Erlang VM. But what does all that mean?

It means you can stop worrying about many of the difficult things that cur-
rently consume your time. You no longer have to think too hard about pro-
tecting your data consistency in a multithreaded environment. You worry less
about scaling your applications. And, most importantly, you can think about
programming in a different way.

Programming Should Be About Transforming Data
If you come from an object-oriented world, then you are used to thinking in
terms of classes and their instances. A class defines behavior, and objects
hold state. Developers spend time coming up with intricate hierarchies of
classes that try to model their problem, much as Victorian scientists created
taxonomies of butterflies.

When we code with objects, we’re thinking about state. Much of our time is
spent calling methods in objects and passing them other objects. Based on these
calls, objects update their own state, and possibly the state of other objects. In
this world, the class is king—it defines what each instance can do, and it implic-
itly controls the state of the data its instances hold. Our goal is data-hiding.

But that’s not the real world. In the real world, we don’t want to model abstract
hierarchies (because in reality there aren’t that many true hierarchies). We
want to get things done, not maintain state.

Right now, for instance, I’m taking empty computer files and transforming
them into files containing text. Soon I’ll transform those files into a format

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

you can read. A web server somewhere will transform your request to download
the book into an HTTP response containing the content.

I don’t want to hide data. I want to transform it.

Combine Transformations with Pipelines
Unix users are accustomed to the philosophy of small, focused command-line
tools that can be combined in arbitrary ways. Each tool takes an input, trans-
forms it, and writes the result in a format the next tool (or a human) can use.

This philosophy is incredibly flexible and leads to fantastic reuse. The Unix
utilities can be combined in ways undreamed of by their authors. And each
one multiplies the potential of the others.

It’s also highly reliable—each small program does one thing well, which makes
it easier to test.

There’s another benefit. A command pipeline can operate in parallel. If I write

$ grep Elixir *.pml | wc -l

the word-count program, wc, runs at the same time as the grep command.
Because wc consumes grep’s output as it is produced, the answer is ready with
virtually no delay once grep finishes.

Just to give you a taste of this, here’s an Elixir function called pmap. It takes
a collection and a function, and returns the list that results from applying
that function to each element of the collection. But…it runs a separate process
to do the conversion of each element. Don’t worry about the details for now.

spawn/pmap1.exs
defmodule Parallel do

def pmap(collection, func) do
collection
|> Enum.map(&(Task.async(fn -> func.(&1) end)))
|> Enum.map(&Task.await/1)

end
end

We could run this function to get the squares of the numbers from 1 to 1,000.

result = Parallel.pmap 1..1000, &(&1 * &1)

And, yes, I just kicked off 1,000 background processes, and I used all the
cores and processors on my machine.

The code may not make much sense, but by about halfway through the book,
you’ll be writing this kind of thing for yourself.

Chapter 1. Take the Red Pill • 2

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/pmap1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Functions Are Data Transformers
Elixir lets us solve the problem in the same way the Unix shell does. Rather
than have command-line utilities, we have functions. And we can string them
together as we please. The smaller—more focused—those functions, the more
flexibility we have when combining them.

If we want, we can make these functions run in parallel—Elixir has a simple
but powerful mechanism for passing messages between them. And these are
not your father’s boring old processes or threads—we’re talking about the
potential to run millions of them on a single machine and have hundreds of
these machines interoperating. Bruce Tate commented on this paragraph
with this thought: “Most programmers treat threads and processes as a nec-
essary evil; Elixir developers feel they are an important simplification.” As we
get deeper into the book, you’ll start to see what he means.

This idea of transformation lies at the heart of functional programming: a
function transforms its inputs into its output. The trigonometric function sin
is an example—give it π⁄4, and you’ll get back 0.7071. An HTML templating
system is a function; it takes a template containing placeholders and a list
of named values, and produces a completed HTML document.

But this power comes at a price. You’re going to have to unlearn a whole lot
of what you know about programming. Many of your instincts will be wrong.
And this will be frustrating, because you’re going to feel like a total n00b.

Personally, I feel that’s part of the fun. You didn’t learn, say, object-oriented
programming overnight. You are unlikely to become a functional programming
expert by breakfast, either.

But at some point things will click. You’ll start thinking about problems in a
different way, and you’ll find yourself writing code that does amazing things
with very little effort on your part. You’ll find yourself writing small chunks
of code that can be used over and over, often in unexpected ways (just as wc
and grep can be).

Your view of the world may even change a little as you stop thinking in terms
of responsibilities and start thinking in terms of getting things done. And just
about everyone can agree that will be fun.

Installing Elixir
This book assumes you’re using at least Elixir 1.6. The most up-to-date
instructions for installing Elixir are available at http://elixir-lang.org/install.html. Go
install it now.

report erratum • discuss

Installing Elixir • 3

http://elixir-lang.org/install.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Running Elixir
In this book, I show a terminal session like this:

$ echo Hello, World
Hello, World

The terminal prompt is the dollar sign, and the stuff you type follows. (On
your system, the prompt will likely be different.) Output from the system is
shown without highlighting.

iex—Interactive Elixir
To test that your Elixir installation was successful, let’s start an interactive
Elixir session. At your regular shell prompt, type iex.

$ iex
Erlang/OTP 20 [erts-9.1] [source] [64-bit] [smp:4:4] [ds:4:4:10]

[async-threads:10] [hipe] [kernel-poll:false]h
Interactive Elixir (x.y.z) - press Ctrl+C to exit (type h() ENTER for h
elp)
iex(1)>

(The various version numbers you see will likely be different—I won’t bother
to show them on subsequent examples.)

Once you have an IEx prompt, you can enter Elixir code and you’ll see the
result. If you enter an expression that continues over more than one line, IEx
will prompt for the additional lines with an ellipsis (…).

iex(1)> 3 + 4
7
iex(2)> String.reverse "madamimadam"
"madamimadam"
iex(3)> 5 *
...(3)> 6
30
iex(4)>

The number in the prompt increments for each complete expression executed.
I’ll omit the number in most of the examples that follow.

There are several ways of exiting from IEx—none are tidy. The easiest two are
typing Ctrl-C twice or typing Ctrl-G followed by q and Return . On some systems,
you can also use a single Ctrl- \ .

Chapter 1. Take the Red Pill • 4

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

IEx Helpers

IEx has a number of helper functions. Type h (followed by Return) to get a list:

iex> h
IEx.Helpers

Welcome to Interactive Elixir. You are currently seeing the documentation
for the module IEx.Helpers which provides many helpers to make Elixir's
shell more joyful to work with.

This message was triggered by invoking the helper h(), usually referred to
as h/0 (since it expects 0 arguments).

You can use the h/1 function to invoke the documentation for any Elixir
module or function:

iex> h(Enum)
iex> h(Enum.map)
iex> h(Enum.reverse/1)

You can also use the i/1 function to introspect any value you have in the
shell:

iex> i("hello")

There are many other helpers available, here are some examples:

• b/1 - prints callbacks info and docs for a given module
• c/1 - compiles a file into the current directory
• c/2 - compiles a file to the given path
• cd/1 - changes the current directory
• clear/0 - clears the screen
• exports/1 - shows all exports (functions + macros) in a module
• flush/0 - flushes all messages sent to the shell
• h/0 - prints this help message
• h/1 - prints help for the given module, function or macro
• i/0 - prints information about the last value
• i/1 - prints information about the given term
• ls/0 - lists the contents of the current directory
• ls/1 - lists the contents of the specified directory
• open/1 - opens the source for the given module or function

in your editor
• pid/1 - creates a PID from a string
• pid/3 - creates a PID with the 3 integer arguments passed
• ref/1 - creates a Reference from a string
• ref/4 - creates a Reference with the 4 integer arguments

passed
• pwd/0 - prints the current working directory
• r/1 - recompiles the given module's source file
• recompile/0 - recompiles the current project
• runtime_info/0 - prints runtime info (versions, memory usage, stats)
• v/0 - retrieves the last value from the history
• v/1 - retrieves the nth value from the history

report erratum • discuss

Running Elixir • 5

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Help for all of those functions can be consulted directly from the command
line using the h/1 helper itself. Try:

iex> h(v/0)

To list all IEx helpers available, which is effectively all exports
(functions and macros) in the IEx.Helpers module:

iex> exports(IEx.Helpers)

This module also includes helpers for debugging purposes, see IEx.break!/4
for more information.

To learn more about IEx as a whole, type h(IEx).

In the list of helper functions, the number following the slash is the number
of arguments the helper expects.

Probably the most useful is h itself. With an argument, it gives you help on
Elixir modules or individual functions in a module. This works for any modules
loaded into IEx (so when we talk about projects later on, you’ll see your own
documentation here, too). For example, the IO module performs common
input/output functions. For help on the module, type h(IO) or h IO:

iex> h IO # or...
iex> h(IO)

Functions handling IO.

Many functions in this module expect an IO device as argument. An IO device
must be a PID or an atom representing a process. For convenience, Elixir
provides :stdio and :stderr as shortcuts to Erlang's :standard_io and
:standard_error....

This book frequently uses the puts function in the IO module, which in its
simplest form writes a string to the console. Let’s get the documentation:

iex> h IO.puts
def puts(device \\ :stdio, item)

Writes item to the given device, similar to write/2, but adds a
newline at the end.

By default, the device is the standard output. It returns :ok if it
succeeds.

Examples

IO.puts "Hello, World!"
#=> Hello, World!

IO.puts :stderr, "error"
#=> error

Chapter 1. Take the Red Pill • 6

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Another informative helper is i, which displays information about a value:

iex> i 123
Term

123
Data type

Integer
Reference modules

Integer
Implemented protocols

IEx.Info, Inspect, List.Chars, String.Chars

iex> i "cat"
Term

"cat"
Data type

BitString
Byte size

3
Description

This is a string: a UTF-8 encoded binary. It's printed surrounded by
"double quotes" because all UTF-8 encoded codepoints in it are printable.

Raw representation
<<99, 97, 116>>

Reference modules
String, :binary

Implemented protocols
IEx.Info, Collectable, Inspect, List.Chars, String.Chars

iex> i %{ name: "Dave", likes: "Elixir" }
Term

%{likes: "Elixir", name: "Dave"}
Data type

Map
Reference modules

Map
Implemented protocols

IEx.Info, Collectable, Enumerable, Inspect

iex> i Map
Term

Map
Data type

Atom
Module bytecode

bin/../lib/elixir/ebin/Elixir.Map.beam
Source

lib/elixir/lib/map.ex
Version

[234303838320399652689109978883853316190]
Compile options

[]

report erratum • discuss

Running Elixir • 7

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Description
Use h(Map) to access its documentation.
Call Map.module_info() to access metadata.

Raw representation
:"Elixir.Map"

Reference modules
Module, Atom

Implemented protocols
IEx.Info, Inspect, List.Chars, String.Chars

IEx is a surprisingly powerful tool. Use it to compile and execute entire
projects, log in to remote machines, and access running Elixir applications.

And, if you happen to include the occasional bug in your code (deliberately,
of course), IEx has a simple debugger. We’ll talk about it when we look at
tooling on page 169.

Customizing iex

You can customize IEx by setting options. For example, I like showing the
results of evaluations in bright cyan. To find out how to do that, I used this:

iex> h IEx.configure
def configure(options)

Configures IEx.

The supported options are: :colors, :inspect, :default_prompt,
:alive_prompt and :history_size.

Colors

A keyword list that encapsulates all color settings used by the shell. See
documentation for the IO.ANSI module for the list of supported colors and
attributes.

The value is a keyword list. List of supported keys:

• :enabled - boolean value that allows for switching the coloring
on and off

• :eval_result - color for an expression's resulting value
• :eval_info - … various informational messages
• :eval_error - … error messages
• :stack_app - … the app in stack traces
• :stack_info - … the remaining info in stack traces
• :ls_directory - … for directory entries (ls helper)
• :ls_device - … device entries (ls helper)

. . .

I then created a file called .iex.exs in my home directory, containing

IEx.configure colors: [eval_result: [:cyan, :bright]]

Chapter 1. Take the Red Pill • 8

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

If your IEx session looks messed up (and things such as [33m appear in the
output), it’s likely your console does not support ANSI escape sequences. In
that case, disable colorization using

IEx.configure colors: [enabled: false]

You can put any Elixir code into .iex.exs.

Compile and Run
Once you tire of writing one-line programs in IEx, you’ll want to start putting
code into source files. These files will typically have the extension .ex or .exs.
This is a convention—files ending in .ex are intended to be compiled into
bytecodes and then run, whereas those ending in .exs are more like programs
in scripting languages—they are effectively interpreted at the source level.
When we come to write tests for our Elixir programs, you’ll see that the
application files have .ex extensions, whereas the tests have .exs because we
don’t need to keep compiled versions of the tests lying around.

Let’s write the classic first program. Go to a working directory and create a
file called hello.exs.

intro/hello.exs
IO.puts "Hello, World!"

That example shows how most of the code listings in this book are presented.
The bar before the code itself shows the path and file name that contains the
code. If you’re reading an ebook, you’ll be able to click on this to download
the source file. You can also download all the code by visiting the book’s page
on our site and clicking on the Source Code link.1

Source file names are written in lowercase with underscores. They will have
the extension .ex for programs that you intend to compile into binary form,
and .exs for scripts that you want to run without compiling. Our “Hello, World”
example is essentially throw-away code, so we used the .exs extension for it.

1. http://pragprog.com/titles/elixir16

report erratum • discuss

Running Elixir • 9

http://media.pragprog.com/titles/elixir16/code/intro/hello.exs
http://pragprog.com/titles/elixir16
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Having created our source file, let’s run it. In the same directory where you
created the file, run the elixir command:

$ elixir hello.exs
Hello, World!

We can also compile and run it inside IEx using the c helper:

$ iex
iex> c "hello.exs"
Hello, World!
[]
iex>

The c helper compiled and executed the source file. The [] that follows the
output is the return value of the c function—if the source file had contained
any modules, their names would have been listed here.

The c helper compiled the source file as freestanding code. You can also load
a file as if you’d typed each line into IEx using import_file. In this case, local
variables set in the file are available in the IEx session.

As some folks fret over such things, the Elixir convention is to use two-column
indentation and spaces (not tabs).

Suggestions for Reading the Book
This book is not a top-to-bottom reference guide to Elixir. Instead, it is
intended to give you enough information to know what questions to ask and
when to ask them. So approach what follows with a spirit of adventure. Try
the code as you read, and don’t stop there. Ask yourself questions and then
try to answer them, either by coding or by searching the web.

Participate in the book’s discussion forums and consider joining the Elixir
mailing list.2

You’re joining the Elixir community while it is still young. Things are exciting
and dynamic, and there are plenty of opportunities to contribute.

Exercises
You’ll find exercises sprinkled throughout this book. To become familiar with
a language, you need to go beyond reading a book and following along with
the examples; you need to write some code yourself. These exercises are

2. https://elixirforum.com

Chapter 1. Take the Red Pill • 10

report erratum • discuss

https://elixirforum.com
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

starting points so you can do some exploring of the language. Try them out,
and don’t be afraid to make mistakes.

Think Different(ly)
This is a book about thinking differently—about accepting that some of the
things folks say about programming may not be the full story:

• Object orientation is not the only way to design code.
• Functional programming need not be complex or mathematical.
• The bases of programming are not assignments, if statements, and loops.
• Concurrency does not need locks, semaphores, monitors, and the like.
• Processes are not necessarily expensive resources.
• Metaprogramming is not just something tacked onto a language.
• Even if it is work, programming should be fun.

Of course, I’m not saying Elixir is a magic potion (well, technically it is, but
you know what I mean). It isn’t the one true way to write code. But it’s different
enough from the mainstream that learning it will give you more perspective
and will open your mind to new ways of thinking about programming.

So let’s start.

And remember to make it fun.

report erratum • discuss

Think Different(ly) • 11

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Part I

Conventional Programming

Elixir is great for writing highly parallel, reliable applications.

But to be a great language for parallel programming, a language first has to be great
for conventional, sequential programming. In this part of the book we’ll cover how to
write Elixir code, and explore the idioms and conventions that make Elixir so powerful.

CHAPTER 2

In this chapter, you'll see:
• How pattern matching binds values to variables
• How matching handles structured data
• How _ (underscore) lets you ignore a match

Pattern Matching
We started the previous chapter by saying Elixir engenders a different way
of thinking about programming.

To illustrate this and to lay the foundation for a lot of Elixir programming,
let’s start reprogramming your brain by looking at one of the cornerstones of
all programming languages—assignment.

Assignment:
I Do Not Think It Means What You Think It Means.
Let’s use the interactive Elixir shell, IEx, to look at a simple piece of code.
(Remember, you start IEx at the command prompt using the iex command.
You enter Elixir code at its iex> prompt, and it displays the resulting values.)

iex> a = 1
1
iex> a + 3
4

Most programmers would look at this code and say, “OK, we assign 1 to a
variable a, then on the next line we add 3 to a, giving us 4.”

But when it comes to Elixir, they’d be wrong. In Elixir, the equals sign is not
an assignment. Instead it’s like an assertion. It succeeds if Elixir can find a
way of making the left-hand side equal the right-hand side. Elixir calls the
= symbol the match operator.

In this case, the left-hand side is a variable and the right-hand side is an
integer literal, so Elixir can make the match true by binding the variable a to
value 1. You could argue it is just an assignment. But let’s take it up a notch.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> a = 1
1
iex> 1 = a
1
iex> 2 = a
** (MatchError) no match of right hand side value: 1

Look at the second line of code, 1 = a. It’s another match, and it passes. The
variable a already has the value 1 (it was set in the first line), so what’s on
the left of the equals sign is the same as what’s on the right, and the match
succeeds.

But the third line, 2 = a, raises an error. You might have expected it to assign
2 to a, as that would make the match succeed, but Elixir will only change the
value of a variable on the left side of an equals sign—on the right a variable
is replaced with its value. This failing line of code is the same as 2 = 1, which
causes the error.

More Complex Matches
First, a little background syntax. Elixir lists can be created using square
brackets containing a comma-separated set of values. Here are some lists:

["Humperdinck", "Buttercup", "Fezzik"]
["milk", "butter", ["iocane", 12]]

Back to the match operator.

iex> list = [1, 2, 3]
[1, 2, 3]

To make the match true, Elixir bound the variable list to the list [1, 2, 3].

But let’s try something else:

iex> list = [1, 2, 3]
[1, 2, 3]
iex> [a, b, c] = list
[1, 2, 3]
iex> a
1
iex> b
2
iex> c
3

Chapter 2. Pattern Matching • 16

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Elixir looks for a way to make the value of the left side the same as the value
of the right side. The left side is a list containing three variables, and the right
is a list of three values, so the two sides could be made the same by setting
the variables to the corresponding values.

Elixir calls this process pattern matching. A pattern (the left side) is matched
if the values (the right side) have the same structure and if each term in the
pattern can be matched to the corresponding term in the values. A literal
value in the pattern matches that exact value, and a variable in the pattern
matches by taking on the corresponding value.

Let’s look at a few more examples.

iex> list = [1, 2, [3, 4, 5]]
[1, 2, [3, 4, 5]]
iex> [a, b, c] = list
[1, 2, [3, 4, 5]]
iex> a
1
iex> b
2
iex> c
[3, 4, 5]

The value on the right side that corresponds to the term c on the left side is
the sublist [3,4,5]; that is the value given to c to make the match true.

Let’s try a pattern containing some values and variables.

iex> list = [1, 2, 3]
[1, 2, 3]
iex> [a, 2, b] = list
[1, 2, 3]
iex> a
1
iex> b
3

The literal 2 in the pattern matched the corresponding term on the right, so
the match succeeds by setting the values of a and b to 1 and 3. But…

iex> list = [1, 2, 3]
[1, 2, 3]
iex> [a, 1, b] = list
** (MatchError) no match of right hand side value: [1, 2, 3]

report erratum • discuss

More Complex Matches • 17

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Here the 1 (the second term in the list) cannot be matched against the corre-
sponding element on the right side, so no variables are set and the match
fails. This gives us a way of matching a list that meets certain criteria—in
this case a length of 3, with 1 as its second element.

Your Turn
➤ Exercise: PatternMatching-1

Which of the following will match?

– a = [1, 2, 3]
– a = 4
– 4 = a
– [a, b] = [1, 2, 3]
– a = [[1, 2, 3]]
– [a] = [[1, 2, 3]]
– [[a]] = [[1, 2, 3]]

Ignoring a Value with _ (Underscore)
If we didn’t need to capture a value during the match, we could use the special
variable _ (an underscore). This acts like a variable but immediately discards
any value given to it—in a pattern match, it is like a wildcard saying, “I’ll
accept any value here.” The following example matches any three-element
list that has a 1 as its first element.

iex> [1, _, _] = [1, 2, 3]
[1, 2, 3]
iex> [1, _, _] = [1, "cat", "dog"]
[1, "cat", "dog"]

Variables Bind Once (per Match)
Once a variable has been bound to a value in the matching process, it keeps
that value for the remainder of the match.

iex> [a, a] = [1, 1]
[1, 1]
iex> a
1
iex> [b, b] = [1, 2]
** (MatchError) no match of right hand side value: [1, 2]

Chapter 2. Pattern Matching • 18

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The first expression in this example succeeds because a is initially matched
with the first 1 on the right side. The value in a is then used in the second
term to match the second 1 on the right side.

In the next expression, the first b matches the 1. But the second b corresponds
to the value 2 on the right. b cannot have two different values, and so the
match fails.

However, a variable can be bound to a new value in a subsequent match, and
its current value does not participate in the new match.

iex> a = 1
1
iex> [1, a, 3] = [1, 2, 3]
[1, 2, 3]
iex> a
2

What if you instead want to force Elixir to use the existing value of the variable
in the pattern? Prefix it with ̂ (a caret). In Elixir, we call this the pin operator.

iex> a = 1
1
iex> a = 2
2
iex> ^a = 1
** (MatchError) no match of right hand side value: 1

This also works if the variable is a component of a pattern:

iex> a = 1
1
iex> [^a, 2, 3] = [1, 2, 3] # use existing value of a
[1, 2, 3]
iex> a = 2
2
iex> [^a, 2] = [1, 2]
** (MatchError) no match of right hand side value: [1, 2]

There’s one more important part of pattern matching, which we’ll look at
when we start digging deeper into lists on page 71.

Your Turn
➤ Exercise: PatternMatching-2

Which of the following will match?

– [a, b, a] = [1, 2, 3]
– [a, b, a] = [1, 1, 2]
– [a, b, a] = [1, 2, 1]

report erratum • discuss

Variables Bind Once (per Match) • 19

http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

➤ Exercise: PatternMatching-3
The variable a is bound to the value 2. Which of the following will match?

– [a, b, a] = [1, 2, 3]
– [a, b, a] = [1, 1, 2]
– a = 1
– ^a = 2
– ^a = 1
– ^a = 2 - a

Another Way of Looking at the Equals Sign
Elixir’s pattern matching is similar to Erlang’s (the main difference being that
Elixir allows a match to reassign to a variable that was assigned in a prior
match, whereas in Erlang a variable can be assigned only once).

Joe Armstrong, Erlang’s creator, compares the equals sign in Erlang to that
used in algebra. When you write the equation x = a + 1, you are not assigning
the value of a + 1 to x. Instead you’re simply asserting that the expressions
x and a + 1 have the same value. If you know the value of x, you can work
out the value of a, and vice versa.

His point is that you had to unlearn the algebraic meaning of = when you
first came across assignment in imperative programming languages. Now’s
the time to un-unlearn it.

That’s why I talk about pattern matching as the first chapter in this part of
the book. It is a core part of Elixir—we’ll also use it in conditions, function
calls, and function invocation.

But really, I wanted to get you thinking differently about programming lan-
guages and to show you that some of your existing assumptions won’t work
in Elixir.

And speaking of existing assumptions…the next chapter kills another sacred
cow. Your current programming language is probably designed to make it
easy to change data. After all, that’s what programs do, right? Not Elixir. Let’s
talk about a language in which all data is immutable.

Chapter 2. Pattern Matching • 20

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 3

Change and decay in all around I see…

 ➤ Henry Francis Lyte, “Abide with Me”

Immutability
If you listen to functional-programming aficionados, you’ll hear people making
a big deal about immutability—the fact that in a functional program, data
cannot be altered once created.

And, indeed, Elixir enforces immutable data.

But why?

You Already Have (Some) Immutable Data
Forget about Elixir for a moment. Think about your current programming
language of choice. Let’s imagine you’d written this:

count = 99
do_something_with(count)
print(count)

You’d expect it to output 99. In fact, you’d be very surprised if it didn’t. At
your very core, you believe that 99 will always have the value 99.

Now, you could obviously bind a new value to your variable, but that doesn’t
change the fact that the value 99 is still 99.

Imagine programming in a world where you could not rely on that—where
some other code, possibly running in parallel with your own, could change
the value of 99. In that world, the call to do_something_with might kick off code
that runs in the background, passing it the value 99 as an argument. And
that could change the contents of the parameter it receives. Suddenly, 99
could be 100.

You’d be (rightly) upset. And, what’s worse, you’d never really be able to
guarantee your code produced the correct results.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Still thinking about your current language, consider this:

array = [1, 2, 3]
do_something_with(array)
print(array)

Again, you’d hope the print call would output [1,2,3]. But in most languages,
do_something_with will receive the array as a reference. If it decides to change
the second element or delete the contents entirely, the output will not be
what you expect. Now it is harder to look at your code and reason about
what it does.

Take this a step further—run multiple threads, all with access to the array.
Who knows what state the array will be in if they all start changing it?

All this is because most compound data structures in most programming
languages are mutable—you can change all or part of their content. And if
pieces of your code do this in parallel, you’re in a world of hurt.

By coincidence, Jessica Kerr (@jessitron) tweeted the following on the day I
updated this section:

It’s spot-on.

Immutable Data Is Known Data
Elixir sidesteps these problems. In Elixir, all values are immutable. The most
complex nested list, the database record—these things behave just like the
simplest integer. Their values are all immutable.

In Elixir, once a variable references a list such as [1,2,3], you know it will
always reference those same values (until you rebind the variable). And this
makes concurrency a lot less frightening.

But what if you need to add 100 to each element in [1,2,3]? Elixir does it by
producing a copy of the original, containing the new values. The original
remains unchanged, and your operation will not affect any other code holding
a reference to that original.

This fits in nicely with the idea that programming is about transforming data.
When we update [1,2,3], we don’t hack it in place. Instead we transform it into
something new.

Chapter 3. Immutability • 22

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Performance Implications of Immutability
It would be easy to assume that this approach to programming is inefficient.
After all, you have to create a new copy of data whenever you update it, and
that’s going to leave lots of old values around to be garbage-collected. Let’s
look at these in turn.

Copying Data
Although common sense might dictate that all this copying of data is ineffi-
cient, the reverse is true. Because Elixir knows that existing data is immutable,
it can reuse it, in part or as a whole, when building new structures.

Consider the following code. (It uses a new operator, [head | tail], which builds
a new list with head as its first element and tail as the rest. We’ll spend a whole
chapter on this when we talk about lists and recursion. For now, just trust.)

iex> list1 = [3, 2, 1]
[3, 2, 1]
iex> list2 = [4 | list1]
[4, 3, 2, 1]

In most languages, list2 would be built by creating a new list containing the
values 4, 3, 2, and 1. The three values in list1 would be copied into the tail of
list2. And that would be necessary because list1 would be mutable.

But Elixir knows list1 will never change, so it simply constructs a new list with
a head of 4 and a tail of list1.

Garbage Collection
The other performance issue with a transformational language is that you
quite often end up leaving old values unused when you create new values
from them. This leaves a bunch of things using up memory on the heap, so
garbage collection has to reclaim them.

Most modern languages have a garbage collector, and developers have grown
to be suspicious of them—they can impact performance quite badly.

But the cool thing about Elixir is that you write your code using lots and lots
of processes, and each process has its own heap. The data in your application
is divvied up between these processes, so each individual heap is much, much
smaller than would have been the case if all the data had been in a single
heap. As a result, garbage collection runs faster. If a process terminates before
its heap becomes full, all its data is discarded—no garbage collection is
required.

report erratum • discuss

Performance Implications of Immutability • 23

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Coding with Immutable Data
Once you accept the concept, coding with immutable data is surprisingly
easy. You just have to remember that any function that transforms data will
return a new copy of it. Thus, we never capitalize a string. Instead, we return
a capitalized copy of a string.

iex> name = "elixir"
"elixir"
iex> cap_name = String.capitalize name
"Elixir"
iex> name
"elixir"

If you’re coming from an object-oriented language, you may dislike that we
write String.capitalize name and not name.capitalize(). But in object-oriented lan-
guages, objects mostly have mutable state. When you make a call such as
name.capitalize() you have no immediate indication whether you are changing
the internal representation of the name, returning a capitalized copy, or both.
There’s plenty of scope for ambiguity.

In a functional language, we always transform data. We never modify it in
place. The syntax reminds us of this every time we use it.

That’s enough theory. It’s time to start learning the language. In the next
chapter we’ll quickly go over the basic data types and some syntax, and in
the following chapters we’ll look at functions and modules.

Chapter 3. Immutability • 24

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 4

In this chapter, you'll see:
• Five value types
• Two system types
• Four collection types
• Naming, operators, etc.
• The with expression

Elixir Basics
In this chapter we’ll look at the types that are baked into Elixir, along with a
few other things you need to know to get started. This chapter is deliberately
terse—you’re a programmer and you know what an integer is, so I’m not going
to insult you. Instead, I try to cover the Elixir-specific stuff you need to know.

Built-in Types
Elixir’s built-in types are

• Value types:
– Arbitrary-sized integers
– Floating-point numbers
– Atoms
– Ranges
– Regular expressions

• System types:
– PIDs and ports
– References

• Collection types:
– Tuples
– Lists
– Maps
– Binaries

Functions are a type too. They have their own chapter, following this one.

You might be surprised that this list doesn’t include things such as strings
and structures. Elixir has them, but they are built using the basic types from
this list. However, they are important. Strings have their own chapter, and

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

we have a couple of chapters on lists and maps (and other dictionary-like
types). The maps chapter also describes the Elixir structure facilities.

Finally, there’s some debate about whether regular expressions and ranges
are value types. Technically they aren’t—under the hood they are just struc-
tures. But right now it’s convenient to treat them as distinct types.

Value Types
The value types in Elixir represent numbers, names, ranges, and regular
expressions.

Integers
Integer literals can be written as decimal (1234), hexadecimal (0xcafe), octal
(0o765), and binary (0b1010).

Decimal numbers may contain underscores—these are often used to separate
groups of three digits when writing large numbers, so one million could be
written 1_000_000 (or perhaps 100_0000 in China and Japan).

There is no fixed limit on the size of integers—their internal representation
grows to fit their magnitude.

factorial(10000) # => 28462596809170545189...and so on for 35640 more digits...

(You’ll see how to write a function such as factorial in Modules and Named
Functions, on page 53.)

Floating-Point Numbers
Floating-point numbers are written using a decimal point. There must be at
least one digit before and after the decimal point. An optional trailing exponent
may be given. These are all valid floating-point literals:

1.0 0.2456 0.314159e1 314159.0e-5

Floats are IEEE 754 double precision, giving them about 16 digits of accuracy
and a maximum exponent of around 10308.

Atoms
Atoms are constants that represent something’s name. We write them using
a leading colon (:), which can be followed by an atom word or an Elixir opera-
tor. An atom word is a sequence of UTF-8 letters (including combining marks),
digits, underscores, and at signs (@). It may end with an exclamation point
or a question mark. You can also create atoms containing arbitrary characters

Chapter 4. Elixir Basics • 26

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

by enclosing the characters following the colon in double quotes. These are
all atoms:

:fred :is_binary? :var@2 :<> :=== :"func/3"
:"long john silver" :эликсир :mötley_crüe

An atom’s name is its value. Two atoms with the same name will always
compare as being equal, even if they were created by different applications
on two computers separated by an ocean.

We’ll be using atoms a lot to tag values.

Ranges
Ranges are represented as start..end, where start and end are integers.

Regular Expressions
Elixir has regular-expression literals, written as ~r{regexp} or ~r{regexp}opts.
Here I show the delimiters for regular-expression literals as { and }, but they
are considerably more flexible. You can choose any nonalphanumeric charac-
ters as delimiters, as described in the discussion of sigils on page 118. Some
people use ~r/…/ for nostalgic reasons, but this is less convenient than the
bracketed forms, as any forward slashes inside the pattern must be escaped.

Elixir regular expression support is provided by PCRE,1 which basically pro-
vides a Perl 5–compatible syntax for patterns.

You can specify one or more single-character options following a regexp literal.
These modify the literal’s match behavior or add functionality.

MeaningOpt

Force the pattern to start to match on the first line of a multiline string.f

Make matches case insensitive.i

If the string to be matched contains multiple lines, ̂ and $ match the start
and end of these lines. \A and \z continue to match the beginning or end of
the string.

m

Allow . to match any newline characters.s

Normally modifiers like * and + are greedy, matching as much as possible.
The U modifier makes them ungreedy, matching as little as possible.

U

Enable unicode-specific patterns like \p.u

Enable extended mode—ignore whitespace and comments (# to end of line).x

1. http://www.pcre.org/

report erratum • discuss

Value Types • 27

http://www.pcre.org/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

You manipulate regular expressions with the Regex module.

iex> Regex.run ~r{[aeiou]}, "caterpillar"
["a"]
iex> Regex.scan ~r{[aeiou]}, "caterpillar"
[["a"], ["e"], ["i"], ["a"]]
iex> Regex.split ~r{[aeiou]}, "caterpillar"
["c", "t", "rp", "ll", "r"]
iex> Regex.replace ~r{[aeiou]}, "caterpillar", "*"
"c*t*rp*ll*r"

System Types
These types reflect resources in the underlying Erlang VM.

PIDs and Ports
A PID is a reference to a local or remote process, and a port is a reference to
a resource (typically external to the application) that you’ll be reading or
writing.

The PID of the current process is available by calling self. A new PID is created
when you spawn a new process. We’ll talk about this in Part II.

References
The function make_ref creates a globally unique reference; no other reference
will be equal to it. We don’t use references in this book.

Collection Types
The types we’ve seen so far are common in other programming languages.
Now we’re getting into more exotic types, so we’ll go into more detail here.

Elixir collections can hold values of any type (including other collections).

Tuples
A tuple is an ordered collection of values. As with all Elixir data structures,
once created a tuple cannot be modified.

You write a tuple between braces, separating the elements with commas.

{ 1, 2 } { :ok, 42, "next" } { :error, :enoent }

A typical Elixir tuple has two to four elements—any more and you’ll probably
want to look at maps, on page 83, or structs, on page 88.

Chapter 4. Elixir Basics • 28

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

You can use tuples in pattern matching:

iex> {status, count, action} = {:ok, 42, "next"}
{:ok, 42, "next"}
iex> status
:ok
iex> count
42
iex> action
"next"

It is common for functions to return a tuple where the first element is the
atom :ok if there were no errors. Here’s an example (assuming you have a file
called mix.exs in your current directory):

iex> {status, file} = File.open("mix.exs")
{:ok, #PID<0.39.0>}

Because the file was successfully opened, the tuple contains an :ok status
and a PID, which is how we access the contents.

A common practice is to write matches that assume success:

iex> { :ok, file } = File.open("mix.exs")
{:ok, #PID<0.39.0>}
iex> { :ok, file } = File.open("non-existent-file")
** (MatchError) no match of right hand side value: {:error, :enoent}

The second open failed, and returned a tuple where the first element was :error.
This caused the match to fail, and the error message shows that the second
element contains the reason—enoent is Unix-speak for “file does not exist.”

Lists
We’ve already seen Elixir’s list literal syntax, [1,2,3]. This might lead you to
think lists are like arrays in other languages, but they are not. (In fact, tuples
are the closest Elixir gets to a conventional array.) Instead, a list is effectively
a linked data structure.

Definition of a List

A list may either be empty or consist of a head and a tail. The head
contains a value and the tail is itself a list.

(If you’ve used the language Lisp, then this will all seem very familiar.)

As we’ll discuss in Chapter 7, Lists and Recursion, on page 71, this recursive
definition of a list is the core of much Elixir programming.

report erratum • discuss

Collection Types • 29

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Because of their implementation, lists are easy to traverse linearly, but they
are expensive to access in random order. (To get to the nth element, you have
to scan through n–1 previous elements.) It is always cheap to get the head of
a list and to extract the tail of a list.

Lists have one other performance characteristic. Remember that we said all
Elixir data structures are immutable? That means once a list has been made,
it will never be changed. So, if we want to remove the head from a list, leaving
just the tail, we never have to copy the list. Instead we can return a pointer
to the tail. This is the basis of all the list-traversal tricks we’ll cover in Chapter
7, Lists and Recursion, on page 71.

Elixir has some operators that work specifically on lists:

iex> [1, 2, 3] ++ [4, 5, 6] # concatenation
[1, 2, 3, 4, 5, 6]
iex> [1, 2, 3, 4] -- [2, 4] # difference
[1, 3]
iex> 1 in [1,2,3,4] # membership
true
iex> "wombat" in [1, 2, 3, 4]
false

Keyword Lists

Because we often need simple lists of key/value pairs, Elixir gives us a
shortcut. If we write

[name: "Dave", city: "Dallas", likes: "Programming"]

Elixir converts it into a list of two-value tuples:

[{:name, "Dave"}, {:city, "Dallas"}, {:likes, "Programming"}]

Elixir allows us to leave off the square brackets if a keyword list is the last
argument in a function call. Thus,

DB.save record, [{:use_transaction, true}, {:logging, "HIGH"}]

can be written more cleanly as

DB.save record, use_transaction: true, logging: "HIGH"

We can also leave off the brackets if a keyword list appears as the last item
in any context where a list of values is expected.

iex> [1, fred: 1, dave: 2]
[1, {:fred, 1}, {:dave, 2}]
iex> {1, fred: 1, dave: 2}
{1, [fred: 1, dave: 2]}

Chapter 4. Elixir Basics • 30

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Maps
A map is a collection of key/value pairs. A map literal looks like this:

%{ key => value, key => value }

Here are some maps:

iex> states = %{ "AL" => "Alabama", "WI" => "Wisconsin" }
%{"AL" => "Alabama", "WI" => "Wisconsin"}

iex> responses = %{ { :error, :enoent } => :fatal, { :error, :busy } => :retry }
%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}

iex> colors = %{ :red => 0xff0000, :green => 0x00ff00, :blue => 0x0000ff }
%{blue: 255, green: 65280, red: 16711680}

In the first case the keys are strings, in the second they’re tuples, and in the
third they’re atoms. Although typically all the keys in a map are the same
type, that isn’t required.

iex> %{ "one" => 1, :two => 2, {1,1,1} => 3 }
%{:two => 2, {1, 1, 1} => 3, "one" => 1}

If the key is an atom, you can use the same shortcut that you use with key-
word lists:

iex> colors = %{ red: 0xff0000, green: 0x00ff00, blue: 0x0000ff }
%{blue: 255, green: 65280, red: 16711680}

You can also use expressions for the keys in map literals:

iex> name = "José Valim"
"José Valim"
iex> %{ String.downcase(name) => name }
%{"josé valim" => "José Valim"}

Why do we have both maps and keyword lists? Maps allow only one entry for
a particular key, whereas keyword lists allow the key to be repeated. Maps
are efficient (particularly as they grow), and they can be used in Elixir’s pattern
matching, which we discuss in later chapters.

In general, use keyword lists for things such as command-line parameters and
passing around options, and use maps when you want an associative array.

Accessing a Map
You extract values from a map using the key. The square-bracket syntax
works with all maps:

report erratum • discuss

Maps • 31

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> states = %{ "AL" => "Alabama", "WI" => "Wisconsin" }
%{"AL" => "Alabama", "WI" => "Wisconsin"}
iex> states["AL"]
"Alabama"
iex> states["TX"]
nil

iex> response_types = %{ { :error, :enoent } => :fatal,
...> { :error, :busy } => :retry }
%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}
iex> response_types[{:error,:busy}]
:retry

If the keys are atoms, you can also use a dot notation:

iex> colors = %{ red: 0xff0000, green: 0x00ff00, blue: 0x0000ff }
%{blue: 255, green: 65280, red: 16711680}
iex> colors[:red]
16711680
iex> colors.green
65280

You’ll get a KeyError if there’s no matching key when you use the dot notation.

Binaries
Sometimes you need to access data as a sequence of bits and bytes. For
example, the headers in JPEG and MP3 files contain fields where a single
byte may encode two or three separate values.

Elixir supports this with the binary data type. Binary literals are enclosed
between << and >>.

The basic syntax packs successive integers into bytes:

iex> bin = << 1, 2 >>
<<1, 2>>
iex> byte_size bin
2

You can add modifiers to control the type and size of each individual field.
Here’s a single byte that contains three fields of widths 2, 4, and 2 bits. (The
example uses some built-in libraries to show the result’s binary value.)

iex> bin = <<3 :: size(2), 5 :: size(4), 1 :: size(2)>>
<<213>>
iex> :io.format("~-8.2b~n", :binary.bin_to_list(bin))
11010101
:ok
iex> byte_size bin
1

Chapter 4. Elixir Basics • 32

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Binaries are both important and arcane. They’re important because Elixir
uses them to represent UTF strings. They’re arcane because, at least initially,
you’re unlikely to use them directly.

Dates and Times
Elixir 1.3 added a calendar module and four new date- and time-related types.
Initially, they were little more than data holders, but Elixir 1.5 started to add
some functionality to them.

The Calendar module represents the rules used to manipulate dates. The only
current implementation is Calendar.ISO, the ISO-8601 representation of the
Gregorian calendar.2

The Date type holds a year, a month, a day, and a reference to the ruling calendar.

iex> d1 = Date.new(2018, 12, 25)
{:ok, ~D[2018-12-25]}
iex> {:ok, d1} = Date.new(2018, 12, 25)
{:ok, ~D[2018-12-25]}
iex> d2 = ~D[2018-12-25]
~D[2018-12-25]
iex> d1 == d2
true
iex> Date.day_of_week(d1)
2
iex> Date.add(d1, 7)
~D[2019-01-01]
iex> inspect d1, structs: false
"%{__struct__: Date, calendar: Calendar.ISO, day: 25, month: 12, year: 2018}"

(The sequences ~D[...] and ~T[...] are examples of Elixir’s sigils. They are a way
of constructing literal values. We’ll see them again when we look at strings
and binaries.)

Elixir can also represent a range of dates:

iex> d1 = ~D[2018-01-01]
~D[2018-01-01]
iex> d2 = ~D[2018-06-30]
~D[2018-06-30]
iex> first_half = Date.range(d1, d2)
#DateRange<~D[2018-01-01], ~D[2018-06-30]>
iex> Enum.count(first_half)
181
iex> ~D[2018-03-15] in first_half
true

2. http://www.iso.org/iso/home/standards/iso8601.htm

report erratum • discuss

Dates and Times • 33

http://www.iso.org/iso/home/standards/iso8601.htm
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The Time type contains an hour, a minute, a second, and fractions of a second.
The fraction is stored as a tuple containing microseconds and the number of
significant digits. (The fact that time values track the number of significant
digits in the seconds field means that ~T[12:34:56.0] is not equal to ~T[12:34:56.00].)

iex> {:ok, t1} = Time.new(12, 34, 56)
{:ok, ~T[12:34:56]}
iex> t2 = ~T[12:34:56.78]
~T[12:34:56.78]
iex> t1 == t2
false
iex> Time.add(t1, 3600)
~T[13:34:56.000000]
iex> Time.add(t1, 3600, :millisecond)
~T[12:34:59.600000]

There are two date/time types: DateTime and NaiveDateTime. The naive version
contains just a date and a time; DateTime adds the ability to associate a time
zone. The ~N[...] sigil constructs NaiveDateTime structs.

If you are using dates and times in your code, you might want to augment
these built-in types with a third-party library, such as Lau Taarnskov’s Cal-
endar library.3

Names, Source Files, Conventions, Operators, and So On
Elixir identifiers must start with a letter or underscore, optionally followed
by letters, digits, and underscores. Here letter means any UTF-8 letter character
(optionally with a combining mark) and digit means a UTF-8 decimal-digit
character. If you’re using ASCII, this does what you’d expect. The identifiers
may end with a question mark or an exclamation mark.

Here are some examples of valid variables:

name josé _age まつもと _42 адрес!

And some examples of invalid variables:

name• a±2 42

Module, record, protocol, and behavior names start with an uppercase letter
and are BumpyCase. All other identifiers start with a lowercase letter or an
underscore, and by convention use underscores between words. If the first
character is an underscore, Elixir doesn’t report a warning if the variable is
unused in a pattern match or function parameter list.

3. https://github.com/lau/calendar

Chapter 4. Elixir Basics • 34

report erratum • discuss

https://github.com/lau/calendar
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

By convention, source files use two-character indentation for nesting—and
they use spaces, not tabs, to achieve this.

Comments start with a hash sign (#) and run to the end of the line.

The Elixir distribution comes with a code formatter, which can be used to
convert a source file into the “approved” representation. We’ll look at this on
page 190. Most examples in this book follow this format (except where I think
it is particularly ugly).

Truth
Elixir has three special values related to Boolean operations: true, false, and
nil. nil is treated as false in Boolean contexts.

(A bit of trivia: all three of these values are aliases for atoms of the same name,
so true is the same as the atom :true.)

In most contexts, any value other than false or nil is treated as true. We
sometimes refer to this as truthy as opposed to true.

Operators
Elixir has a very rich set of operators. Here’s a subset we’ll use in this book:

Comparison operators
a === b # strict equality (so 1 === 1.0 is false)
a !== b # strict inequality (so 1 !== 1.0 is true)
a == b # value equality (so 1 == 1.0 is true)
a != b # value inequality (so 1 != 1.0 is false)
a > b # normal comparison
a >= b # :
a < b # :
a <= b # :

The ordering comparisons in Elixir are less strict than in many languages,
as you can compare values of different types. If the types are the same or are
compatible (for example, 3> 2 or 3.0 < 5), the comparison uses natural ordering.
Otherwise comparison is based on type according to this rule:

number < atom < reference < function < port < pid < tuple < map < list < binary

Boolean operators
(These operators expect true or false as their first argument.)

a or b # true if a is true; otherwise b
a and b # false if a is false; otherwise b
not a # false if a is true; true otherwise

report erratum • discuss

Names, Source Files, Conventions, Operators, and So On • 35

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Relaxed Boolean operators
These operators take arguments of any type. Any value apart from nil or
false is interpreted as true.

a || b # a if a is truthy; otherwise b
a && b # b if a is truthy; otherwise a
!a # false if a is truthy; otherwise true

Arithmetic operators
+ - * / div rem

Integer division yields a floating-point result. Use div(a,b) to get an integer.

rem is the remainder operator. It is called as a function (rem(11, 3) => 2). It
differs from normal modulo operations in that the result will have the
same sign as the function’s first argument.

Join operators
binary1 <> binary2 # concatenates two binaries (Later we'll

see that binaries include strings.)
list1 ++ list2 # concatenates two lists
list1 -- list2 # removes elements of list 2 from a copy of list 1

The in operator
a in enum # tests if a is included in enum (for example,

a list, a range, or a map). For maps, a should
be a {key, value} tuple.

Variable Scope
Elixir is lexically scoped. The basic unit of scoping is the function body.
Variables defined in a function (including its parameters) are local to that
function. In addition, modules define a scope for local variables, but these
are accessible only at the top level of that module, and not in functions defined
in the module.

Do-block Scope
Most languages let you group together multiple code statements and treat
them as a single code block. Often languages use braces for this. Here’s an
example in C:

int line_no = 50;

/* */

if (line_no == 50) {
printf("new-page\f");
line_no = 0;

}

Chapter 4. Elixir Basics • 36

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Elixir doesn’t really have blocks such as these, but it does have ways of
grouping expressions together. The most common of these is the do block:

line_no = 50

...

if (line_no == 50) do
IO.puts "new-page\f"
line_no = 0

end

IO.puts line_no

However, Elixir thinks this is a risky way to write code. In particular, it’s easy
to forget to initialize line_no outside the block, but to then rely on it having a
value after the block. For that reason, you’ll see a warning:

$ elixir back_block.ex
warning: the variable "line_no" is unsafe as it has been set inside one of:
case, cond, receive, if, and, or, &&, ||. Please explicitly return the
variable value instead. Here's an example:

case integer do
1 -> atom = :one
2 -> atom = :two

end

should be written as

atom =
case integer do

1 -> :one
2 -> :two

end

Unsafe variable found at:
t.ex:10

0

The with Expression
The with expression serves double duty. First, it allows you to define a local
scope for variables. If you need a couple of temporary variables when calcu-
lating something, and you don’t want those variables to leak out into the
wider scope, use with. Second, it gives you some control over pattern-matching
failures. For example, the /etc/passwd file contains lines such as

_installassistant:*:25:25:Install Assistant:/var/empty:/usr/bin/false
_lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false
_postfix:*:27:27:Postfix Mail Server:/var/spool/postfix:/usr/bin/false

The two numbers are the user and group IDs for the given username.

report erratum • discuss

Variable Scope • 37

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The following code finds the values for the _lp user (and see the sidebar follow-
ing for some notes on its layout).

basic-types/with-scope.exs
content = "Now is the time"

lp = with {:ok, file} = File.open("/etc/passwd"),
content = IO.read(file, :all), # note: same name as above
:ok = File.close(file),
[_, uid, gid] = Regex.run(~r/^lp:.*?:(\d+):(\d+)/m, content)

do
"Group: #{gid}, User: #{uid}"

end

IO.puts lp #=> Group: 26, User: 26
IO.puts content #=> Now is the time

A Code Formatting Comparison

The with listing is an example of code that isn’t in the canonical Elixir format. If for-
matted using the built-in tool, it would look like the following.

basic-types/with-scope-fmt.exs
content = "Now is the time"

lp =
with {:ok, file} = File.open("/etc/passwd"),

content = IO.read(file, :all),
:ok = File.close(file),
[_, uid, gid] = Regex.run(~r/^_lp:.*?:(\d+):(\d+)/m, content) do

"Group: #{gid}, User: #{uid}"
end

=> Group: 26, User: 26
IO.puts(lp)
=> Now is the time
IO.puts(content)

I’ll let you be the judge of which is clearer.

The with expression lets us work with what are effectively temporary variables
as we open the file, read its content, close it, and search for the line we want.
The value of the with is the value of its do parameter.

The inner variable content is local to the with, and does not affect the variable
in the outer scope.

with and Pattern Matching

In the previous example, the head of the with expression used = for basic pattern
matches. If any of these had failed, a MatchError exception would be raised. But
perhaps we’d want to handle this case in a more elegant way. That’s where the

Chapter 4. Elixir Basics • 38

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/basic-types/with-scope.exs
http://media.pragprog.com/titles/elixir16/code/basic-types/with-scope-fmt.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

<- operator comes in. If you use <- instead of = in a with expression, it performs
a match, but if it fails it returns the value that couldn’t be matched.

iex> with [a|_] <- [1,2,3], do: a
1
iex> with [a|_] <- nil, do: a
nil

We can use this to let the with in the previous example return nil if the user
can’t be found, rather than raising an exception.

basic-types/with-match.exs
result = with {:ok, file} = File.open("/etc/passwd"),

content = IO.read(file, :all),
:ok = File.close(file),
[_, uid, gid] <- Regex.run(~r/^xxx:.*?:(\d+):(\d+)/, content)➤

do
"Group: #{gid}, User: #{uid}"

end
IO.puts inspect(result) #=> nil

When we try to match the user xxx, Regex.run returns nil. This causes the match
to fail, and the nil becomes the value of the with.

A Minor Gotcha

Underneath the covers, with is treated by Elixir as if it were a call to a function
or macro. This means that you cannot write this:

mean = with # WRONG!
count = Enum.count(values),
sum = Enum.sum(values)

do
sum/count

end

Instead, you can put the first parameter on the same line as the with:

mean = with count = Enum.count(values),
sum = Enum.sum(values)

do
sum/count

end

or use parentheses:

mean = with(
count = Enum.count(values),
sum = Enum.sum(values)

do
sum/count

end)

report erratum • discuss

Variable Scope • 39

http://media.pragprog.com/titles/elixir16/code/basic-types/with-match.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

As with all other uses of do, you can also use the shortcut:

mean = with count = Enum.count(values),
sum = Enum.sum(values),

do: sum/count

End of the Basics
We’ve now covered the low-level ingredients of an Elixir program. In the next
two chapters we’ll discuss how to create anonymous functions, modules, and
named functions.

Chapter 4. Elixir Basics • 40

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 5

In this chapter, you'll see:
• Anonymous functions
• Pattern matching and arguments
• Higher-order functions
• Closures
• The & function literal

Anonymous Functions
Elixir is a functional language, so it’s no surprise functions are a basic type.

An anonymous function is created using the fn keyword.

fn
parameter-list -> body
parameter-list -> body ...

end

Think of fn…end as being a bit like the quotes that surround a string literal,
except here we’re returning a function as a value, not a string. We can pass
that function value to other functions. We can also invoke it, passing in
arguments.

At its simplest, a function has a parameter list and a body, separated by ->.

For example, the following defines a function, binding it to the variable sum,
and then calls it:

iex> sum = fn (a, b) -> a + b end
#Function<12.17052888 in :erl_eval.expr/5>
iex> sum.(1, 2)
3

The first line of code creates a function that takes two parameters (named a
and b). The implementation of the function follows the -> arrow (in our case
it simply adds the two parameters), and the whole thing is terminated with
the keyword end. We store the function in the variable sum.

On the second line of code, we invoke the function using the syntax sum.(1,2).
The dot indicates the function call, and the arguments are passed between
parentheses. (You’ll have noticed we don’t use a dot for named function
calls—this is a difference between named and anonymous functions.)

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

If your function takes no arguments, you still need the parentheses to call it:

iex> greet = fn -> IO.puts "Hello" end
#Function<12.17052888 in :erl_eval.expr/5>
iex> greet.()
Hello
:ok

You can, however, omit the parentheses in a function definition:

iex> f1 = fn a, b -> a * b end
#Function<12.17052888 in :erl_eval.expr/5>
iex> f1.(5,6)
30
iex> f2 = fn -> 99 end
#Function<12.17052888 in :erl_eval.expr/5>
iex> f2.()
99

Functions and Pattern Matching
When we call sum.(2,3), it’s easy to assume we simply assign 2 to the parameter
a and 3 to b. But that word, assign, should ring some bells. Elixir doesn’t
have assignment. Instead it tries to match values to patterns. (We came across
this when we looked at pattern matching and assignment on page 15.)

If we write

a = 2

then Elixir makes the pattern match by binding a to the value 2. And that’s
exactly what happens when our sum function gets called. If we pass 2 and 3
as arguments, and Elixir tries to match these arguments to the parameters
a and b (which it does by giving a the value 2 and b the value 3), it’s the same
as when we write

{a, b} = {2, 3}

This means we can perform more complex pattern matching when we call a
function. For example, the following function reverses the order of elements
in a two-element tuple:

iex> swap = fn { a, b } -> { b, a } end
#Function<12.17052888 in :erl_eval.expr/5>
iex> swap.({ 6, 8 })
{8, 6}

We’ll use this pattern-matching capability when we look at functions with
multiple implementations in the next section.

Chapter 5. Anonymous Functions • 42

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: Functions-1

Go into IEx. Create and run the functions that do the following:

– list_concat.([:a, :b], [:c, :d]) #=> [:a, :b, :c, :d]
– sum.(1, 2, 3) #=> 6
– pair_tuple_to_list.({ 1234, 5678 }) #=> [1234, 5678]

One Function, Multiple Bodies
A single function definition lets you define different implementations, depend-
ing on the type and contents of the arguments passed. (You cannot select
based on the number of arguments—each clause in the function definition
must have the same number of parameters.)

At its simplest, we can use pattern matching to select which clause to run.
In the example that follows, we know the tuple returned by File.open has :ok as
its first element if the file was opened, so we write a function that displays
either the first line of a successfully opened file or a simple error message if
the file could not be opened.

iex> handle_open = fnLine 1

...> {:ok, file} -> "Read data: #{IO.read(file, :line)}"2

...> {_, error} -> "Error: #{:file.format_error(error)}"3

...> end4

#Function<12.17052888 in :erl_eval.expr/5>5

iex> handle_open.(File.open("code/intro/hello.exs")) # this file exists6

"Read data: IO.puts \"Hello, World!\"\n"7

iex> handle_open.(File.open("nonexistent")) # this one doesn't8

"Error: no such file or directory"9

Start by looking inside the function definition. On lines 2 and 3 we define two
separate function bodies. Each takes a single tuple as a parameter. The first
of them requires that the first term in the tuple is :ok. The second line uses
the special variable _ (underscore) to match any other value for the first term.

Now look at line 6. We call our function, passing it the result of calling File.open
on a file that exists. This means the function will receive the tuple {:ok,file},
and this matches the clause on line 2. The corresponding code calls IO.read to
read the first line of this file.

We then call handle_open again, this time with the result of trying to open a file
that does not exist. The tuple that is returned ({:error,:enoent}) is passed to our
function, which looks for a matching clause. It fails on line 2 because the

report erratum • discuss

One Function, Multiple Bodies • 43

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

first term is not :ok, but it succeeds on the next line. The code in that clause
formats the error as a nice string.

Note a couple of other things in this code. On line 3 we call :file.format_error. The
:file part of this refers to the underlying Erlang File module, so we can call its
format_error function. Contrast this with the call to File.open on line 6. Here the
File part refers to Elixir’s built-in module. This is a good example of the
underlying environment leaking through into Elixir code. It is good that you
can access all the existing Erlang libraries—there are hundreds of years of
effort in there just waiting for you to use. But it is also tricky because you
have to differentiate between Erlang functions and Elixir functions when you
call them.

And finally, this example shows off Elixir’s string interpolation. Inside a string,
the contents of #{...} are evaluated and the result is substituted back in.

Working with Larger Code Examples

Our handle_open function is getting uncomfortably long to type directly into IEx. One
typo, and we’d have to type it all in again.

Instead, let’s use our editor to type it into a file in the same directory we were in when
we started IEx. Let’s call the file handle_open.exs.

first_steps/handle_open.exs
handle_open = fn
{:ok, file} -> "First line: #{IO.read(file, :line)}"
{_, error} -> "Error: #{:file.format_error(error)}"

end
IO.puts handle_open.(File.open("Rakefile")) # call with a file that exists
IO.puts handle_open.(File.open("nonexistent")) # and then with one that doesn't

Now, inside IEx, type this:

c "handle_open.exs"

This compiles and runs the code in the given file.

We can do the same thing from the command line (that is, not inside IEx) using this:

$ elixir handle_open.exs

We used the file extension .exs for this example. This is used for code that we want
to run directly from a source file (think of the s as meaning script). For files we want
to compile and use later, we’ll employ the .ex extension.

Chapter 5. Anonymous Functions • 44

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/first_steps/handle_open.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: Functions-2

Write a function that takes three arguments. If the first two are zero,
return “FizzBuzz.” If the first is zero, return “Fizz.” If the second is zero,
return “Buzz.” Otherwise return the third argument. Do not use any lan-
guage features that we haven’t yet covered in this book.

➤ Exercise: Functions-3
The operator rem(a, b) returns the remainder after dividing a by b. Write a
function that takes a single integer (n) and calls the function in the previ-
ous exercise, passing it rem(n,3), rem(n,5), and n. Call it seven times with
the arguments 10, 11, 12, and so on. You should get “Buzz, 11, Fizz, 13,
14, FizzBuzz, 16.”

(Yes, it’s a FizzBuzz solution with no conditional logic.)1

Functions Can Return Functions
Here’s some strange code:

iex> fun1 = fn -> fn -> "Hello" end end
#Function<12.17052888 in :erl_eval.expr/5>
iex> fun1.()
#Function<12.17052888 in :erl_eval.expr/5>
iex> fun1.().()
"Hello"

The strange thing is the first line. It’s hard to read, so let’s spread it out.

fun1 = fn ->
fn ->

"Hello"
end

end

The variable fun1 is bound to a function. That function takes no parameters,
and its body is a second function definition. That second function also takes
no parameters, and it evaluates the string "Hello".

When we call the outer function (using fun1.()), it returns the inner function.
When we call that (fun1.().()) the inner function is evaluated and “Hello” is
returned.

1. http://c2.com/cgi/wiki?FizzBuzzTest

report erratum • discuss

Functions Can Return Functions • 45

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-3
http://c2.com/cgi/wiki?FizzBuzzTest
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We wouldn’t normally write something such as fun1.().(). But we might call the
outer function and bind the result to a separate variable. We might also use
parentheses to make the inner function more obvious.

iex> fun1 = fn -> (fn -> "Hello" end) end
#Function<12.17052888 in :erl_eval.expr/5>
iex> other = fun1.()
#Function<12.17052888 in :erl_eval.expr/5>
iex> other.()
"Hello"

Functions Remember Their Original Environment
Let’s take this idea of nesting functions a little further.

iex> greeter = fn name -> (fn -> "Hello #{name}" end) end
#Function<12.17052888 in :erl_eval.expr/5>
iex> dave_greeter = greeter.("Dave")
#Function<12.17052888 in :erl_eval.expr/5>
iex> dave_greeter.()
"Hello Dave"

Now the outer function has a name parameter. Like any parameter, name is
available for use throughout the body of the function. In this case, we use it
inside the string in the inner function.

When we call the outer function, it returns the inner function definition. It
has not yet substituted the name into the string. But when we call the inner
function (dave_greeter.()), the substitution takes place and the greeting appears.

But something strange happens here. The inner function uses the outer
function’s name parameter. But by the time greeter.("Dave") returns, that outer
function has finished executing and the parameter has gone out of scope.
And yet when we run the inner function, it uses that parameter’s value.

This works because functions in Elixir automatically carry with them the
bindings of variables in the scope in which they are defined. In our example,
the variable name is bound in the scope of the outer function. When the inner
function is defined, it inherits this scope and carries the binding of name
around with it. This is a closure—the scope encloses the bindings of its vari-
ables, packaging them into something that can be saved and used later.

Let’s play with this some more.

Parameterized Functions
In the previous example, the outer function took an argument and the inner
one did not. Let’s try a different example where both take arguments.

Chapter 5. Anonymous Functions • 46

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> add_n = fn n -> (fn other -> n + other end) end
#Function<12.17052888 in :erl_eval.expr/5>
iex> add_two = add_n.(2)
#Function<12.17052888 in :erl_eval.expr/5>
iex> add_five = add_n.(5)
#Function<12.17052888 in :erl_eval.expr/5>
iex> add_two.(3)
5
iex> add_five.(7)
12

Here the inner function adds the value of its parameter other to the value of
the outer function’s parameter n. Each time we call the outer function, we
give it a value for n and it returns a function that adds n to its own parameter.

Your Turn
➤ Exercise: Functions-4

Write a function prefix that takes a string. It should return a new function
that takes a second string. When that second function is called, it will
return a string containing the first string, a space, and the second string.

iex> mrs = prefix.("Mrs")
#Function<erl_eval.6.82930912>
iex> mrs.("Smith")
"Mrs Smith"
iex> prefix.("Elixir").("Rocks")
"Elixir Rocks"

Passing Functions as Arguments
Functions are just values, so we can pass them to other functions.

iex> times_2 = fn n -> n * 2 end
#Function<12.17052888 in :erl_eval.expr/5>
iex> apply = fn (fun, value) -> fun.(value) end
#Function<12.17052888 in :erl_eval.expr/5>
iex> apply.(times_2, 6)
12

Here, apply is a function that takes a second function and a value. It returns
the result of invoking that second function with the value as an argument.

We use the ability to pass functions around pretty much everywhere in Elixir
code. For example, the built-in Enum module has a function called map. It takes
two arguments: a collection and a function. It returns a list that is the result
of applying that function to each element of the collection.

report erratum • discuss

Passing Functions as Arguments • 47

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-4
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> list = [1, 3, 5, 7, 9]
[1, 3, 5, 7, 9]
iex> Enum.map list, fn elem -> elem * 2 end
[2, 6, 10, 14, 18]
iex> Enum.map list, fn elem -> elem * elem end
[1, 9, 25, 49, 81]
iex> Enum.map list, fn elem -> elem > 6 end
[false, false, false, true, true]

Pinned Values and Function Parameters
When we originally looked at pattern matching, we saw that the pin operator
(^) allowed us to use the current value of a variable in a pattern. You can use
this with function parameters, too.

functions/pin.exs
defmodule Greeter do

def for(name, greeting) do
fn
(^name) -> "#{greeting} #{name}"
(_) -> "I don't know you"

end
end

end

mr_valim = Greeter.for("José", "Oi!")

IO.puts mr_valim.("José") # => Oi! José
IO.puts mr_valim.("Dave") # => I don't know you

Here, the Greeter.for function returns a function with two heads. The first head
matches when its first parameter is the value of the name passed to for.

The & Notation
The strategy of creating short helper functions is so common that Elixir pro-
vides a shortcut. Let’s look at it in use before we explore what’s going on.

iex> add_one = &(&1 + 1) # same as add_one = fn (n) -> n + 1 end
#Function<6.17052888 in :erl_eval.expr/5>
iex> add_one.(44)
45
iex> square = &(&1 * &1)
#Function<6.17052888 in :erl_eval.expr/5>
iex> square.(8)
64
iex> speak = &(IO.puts(&1))
&IO.puts/1
iex> speak.("Hello")
Hello
:ok

Chapter 5. Anonymous Functions • 48

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/functions/pin.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The & operator converts the expression that follows into a function. Inside
that expression, the placeholders &1, &2, and so on correspond to the first,
second, and subsequent parameters of the function. So &(&1 + &2) will be
converted to fn p1, p2 -> p1 + p2 end.

If you think that’s clever, take a look at the speak line in the previous code.
Normally Elixir would have generated an anonymous function, so &(IO.puts(&1))
would become fn x -> IO.puts(x) end. But Elixir noticed that the body of the
anonymous function was simply a call to a named function (the IO function
puts) and that the parameters were in the correct order (that is, the first
parameter to the anonymous function was the first parameter to the named
function, and so on). So Elixir optimized away the anonymous function,
replacing it with a direct reference to the function, IO.puts/1.

For this to work, the arguments must be in the correct order:

iex> rnd = &(Float.round(&1, &2))
&Float.round/2
iex> rnd = &(Float.round(&2, &1))
#Function<12.17052888 in :erl_eval.expr/5>

You might see references to Erlang pop up when you define functions this
way. That’s because Elixir runs on the Erlang VM. There’s more evidence of
this if you try something like &abs(&1). Here Elixir maps your use of the abs
function directly into the underlying Erlang library, and returns &:erlang.abs/1.

Because [] and {} are operators in Elixir, literal lists and tuples can also be
turned into functions. Here’s a function that returns a tuple containing the
quotient and remainder of dividing two integers:

iex> divrem = &{ div(&1,&2), rem(&1,&2) }
#Function<12.17052888 in :erl_eval.expr/5>
iex> divrem.(13, 5)
{2, 3}

Finally, the & capture operator works with string (and string-like) literals:

iex> s = &"bacon and #{&1}"
#Function<6.99386804/1 in :erl_eval.expr/5>
iex> s.("custard")
"bacon and custard"

iex> match_end = &~r/.*#{&1}$/
#Function<6.99386804/1 in :erl_eval.expr/5>
iex> "cat" =~ match_end.("t")
true
iex> "cat" =~ match_end.("!")
false

report erratum • discuss

Passing Functions as Arguments • 49

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

There’s a second form of the & function capture operator. You can give it the
name and arity (number of parameters) of an existing function, and it will
return an anonymous function that calls it. The arguments you pass to the
anonymous function will in turn be passed to the named function. We’ve
already seen this: when we entered &(IO.puts(&1)) into iex, it displayed the result
as &IO.puts/1. In this case, puts is a function in the IO module, and it takes one
argument. The Elixir way of naming this is IO.puts/1. If we place an & in front
of this, we wrap it in a function. Here are some other examples:

iex> l = &length/1
&:erlang.length/1
iex> l.([1,3,5,7])
4

iex> len = &Enum.count/1
&Enum.count/1
iex> len.([1,2,3,4])
4

iex> m = &Kernel.min/2 # This is an alias for the Erlang function
&:erlang.min/2
iex> m.(99,88)
88

This works with named functions we write, as well (but we haven’t covered
how to write them yet).

The & shortcut gives us a wonderful way to pass functions to other functions.

iex> Enum.map [1,2,3,4], &(&1 + 1)
[2, 3, 4, 5]
iex> Enum.map [1,2,3,4], &(&1 * &1)
[1, 4, 9, 16]
iex> Enum.map [1,2,3,4], &(&1 < 3)
[true, true, false, false]

Your Turn
➤ Exercise: Functions-5

Use the & notation to rewrite the following:

– Enum.map [1,2,3,4], fn x -> x + 2 end
– Enum.each [1,2,3,4], fn x -> IO.inspect x end

Chapter 5. Anonymous Functions • 50

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-5
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Functions Are the Core
At the start of the book, we said the basis of programming is transforming
data. Functions are the little engines that perform that transformation. They
are at the very heart of Elixir.

So far we’ve been looking at anonymous functions—although we can bind
them to variables, the functions themselves have no names. Elixir also has
named functions. In the next chapter we’ll cover how to work with them.

report erratum • discuss

Functions Are the Core • 51

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 6

In this chapter, you'll see:
• Modules, the basic units of code
• Defining public and private named functions
• Guard clauses
• Module directives and attributes
• Calling functions in Erlang modules

Modules and Named Functions
Once a program grows beyond a couple of lines, you’ll want to structure it.
Elixir makes this easy. You break your code into named functions and organize
these functions into modules. In fact, in Elixir named functions must be
written inside modules.

Let’s look at a simple example. Navigate to a working directory and create an
Elixir source file called times.exs.

mm/times.exs
defmodule Times do

def double(n) do
n * 2

end
end

Here we have a module named Times. It contains a single function, double.
Because our function takes a single argument and because the number of
arguments forms part of the way we identify Elixir functions, you’ll see this
function name written as double/1.

Compiling a Module
Let’s look at two ways to compile this file and load it into IEx. First, if you’re
at the command line, you can do this:

$ iex times.exs
iex> Times.double(4)
8

Give IEx a source file’s name, and it compiles and loads the file before it dis-
plays a prompt.

If you’re already in IEx, you can use the c helper to compile your file without
returning to the command line.

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/times.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> c "times.exs"
[Times]
iex> Times.double(4)
8
iex> Times.double(123)
246

The line c "times.exs" compiles your source file and loads it into IEx. We then
call the double function in the Times module a couple of times using Times.double.

What happens if we make our function fail by passing it a string rather than
a number?

iex> Times.double("cat")
** (ArithmeticError) bad argument in arithmetic expression

times.exs:3: Times.double/1

An exception (ArithmeticError) gets raised, and we see a stack backtrace. The
first line tells us what went wrong (we tried to perform arithmetic on a string),
and the next line tells us where. But look at what it writes for the name of
our function: Times.double/1.

In Elixir a named function is identified by both its name and its number of
parameters (its arity). Our double function takes one parameter, so Elixir knows
it as double/1. If we had another version of double that took three parameters,
it would be known as double/3. These two functions are totally separate as far
as Elixir is concerned. But from a human perspective, you’d imagine that if
two functions have the same name they are somehow related, even if they
have a different number of parameters. For that reason, don’t use the same
name for two functions that do unrelated things.

The Function’s Body Is a Block
The do…end block is one way of grouping expressions and passing them to
other code. They are used in module and named function definitions, control
structures…any place in Elixir where code needs to be handled as an entity.

However, do…end is not actually the underlying syntax. The actual syntax
looks like this:

def double(n), do: n * 2

You can pass multiple lines to do: by grouping them with parentheses.

def greet(greeting, name), do: (
IO.puts greeting
IO.puts "How're you doing, #{name}?"

)

Chapter 6. Modules and Named Functions • 54

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The do…end form is just a lump of syntactic sugar—during compilation it is
turned into the do: form. (And the do: form itself is nothing special; it is simply
a term in a keyword list.) Typically people use the do: syntax for single-line
blocks, and do…end for multiline ones.

This means our times example would probably be written as follows:

mm/times1.exs
defmodule Times do

def double(n), do: n * 2
end

We could even write it as

defmodule Times, do: (def double(n), do: n*2)

(but please don’t).

Your Turn
➤ Exercise: ModulesAndFunctions-1

Extend the Times module with a triple function that multiplies its parameter
by three.

➤ Exercise: ModulesAndFunctions-2
Run the result in IEx. Use both techniques to compile the file.

➤ Exercise: ModulesAndFunctions-3
Add a quadruple function. (Maybe it could call the double function.…)

Function Calls and Pattern Matching
In the previous chapter we covered how anonymous functions use pattern
matching to bind their parameter list to the passed arguments. The same is
true of named functions. The difference is that we write the function multiple
times, each time with its own parameter list and body. Although this looks
like multiple function definitions, purists will tell you it’s multiple clauses of
the same definition (and they’d be right).

When you call a named function, Elixir tries to match your arguments with
the parameter list of the first definition (clause). If it cannot match them, it
tries the next definition of the same function (remember, this must have the
same arity) and checks to see if it matches. It continues until it runs out of
candidates.

Let’s play with this. The factorial of n, written n!, is the product of all numbers
from 1 to n. 0! is defined to be 1.

report erratum • discuss

Function Calls and Pattern Matching • 55

http://media.pragprog.com/titles/elixir16/code/mm/times1.exs
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Another way of expressing this is to say

• factorial(0) → 1
• factorial(n) → n * factorial(n-1)

This is a specification of the concept of factorial, but it is also close to an Elixir
implementation:

mm/factorial1.exs
defmodule Factorial do

def of(0), do: 1
def of(n), do: n * of(n-1)

end

Here we have two definitions of the same function. If we call Factorial.of(2), Elixir
matches the 2 against the first function’s parameter, 0. This fails, so it tries
the second definition, which succeeds when Elixir binds 2 to n. It then evalu-
ates the body of this function, which calls Factorial.of(1). The same process
applies, and the second definition is run. This, in turn, calls Factorial.of(0), which
is matched by the first function definition. This function returns 1 and the
recursion ends. Elixir now unwinds the stack, performing all the multiplica-
tions, and returns the answer. This factorial implementation works, but it
could be significantly improved. We’ll do that improvement when we look at
tail recursion on page 202.

Let’s play with this code:

iex> c "factorial1.exs"
[Factorial]
iex> Factorial.of(3)
6
iex> Factorial.of(7)
5040
iex> Factorial.of(10)
3628800
iex> Factorial.of(1000)
40238726007709377354370243392300398571937486421071463254379991042993851239862
90205920442084869694048004799886101971960586316668729948085589013238296699445
...
00624271243416909004153690105933983835777939410970027753472000000000000000000
000
000
000

This pattern of design and coding is very common in Elixir (and almost all
functional languages). First look for the simplest possible case, one that has
a definite answer. This will be the anchor. Then look for a recursive solution
that will end up calling the anchor case.

Chapter 6. Modules and Named Functions • 56

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/factorial1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Here are a couple of examples:

Sum of the first n numbers

• The sum of the first 0 numbers is 0.
• The sum of the numbers up to n is n + the sum of the numbers up to n–1.

Length of a list

• The length of an empty list is 0.
• The length of any other list is 1 + the length of the tail of that list.

One point worth stressing: the order of these clauses can make a difference
when you translate them into code. Elixir tries functions from the top down,
executing the first match. So the following code will not work:

mm/factorial1-bad.exs
defmodule BadFactorial do

def of(n), do: n * of(n-1)
def of(0), do: 1

end

The first function definition will always match and the second will never be
called. But Elixir has you covered—when you try to compile this, you’ll get a
warning:

iex> c "factorial1-bad.exs"
.../factorial1-bad.ex:3: this clause cannot match because a previous clause at

line 2 always matches

One more thing: when you have multiple implementations of the same func-
tion, they should be adjacent in the source file.

Your Turn
➤ Exercise: ModulesAndFunctions-4

Implement and run a function sum(n) that uses recursion to calculate the
sum of the integers from 1 to n. You’ll need to write this function inside
a module in a separate file. Then load up IEx, compile that file, and try
your function.

➤ Exercise: ModulesAndFunctions-5
Write a function gcd(x,y) that finds the greatest common divisor between
two nonnegative integers. Algebraically, gcd(x,y) is x if y is zero; it’s gcd(y,
rem(x,y)) otherwise.

report erratum • discuss

Function Calls and Pattern Matching • 57

http://media.pragprog.com/titles/elixir16/code/mm/factorial1-bad.exs
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-5
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Guard Clauses
We’ve seen that pattern matching allows Elixir to decide which function to
invoke based on the arguments passed. But what if we need to distinguish
based on the argument types or on some test involving their values? For this,
use guard clauses. These are predicates that are attached to a function defi-
nition using one or more when keywords. When doing pattern matching, Elixir
first does the conventional parameter-based match and then evaluates any
when predicates, executing the function only if at least one predicate is true.

mm/guard.exs
defmodule Guard do

def what_is(x) when is_number(x) do
IO.puts "#{x} is a number"

end
def what_is(x) when is_list(x) do

IO.puts "#{inspect(x)} is a list"
end
def what_is(x) when is_atom(x) do

IO.puts "#{x} is an atom"
end

end

Guard.what_is(99) # => 99 is a number
Guard.what_is(:cat) # => cat is an atom
Guard.what_is([1,2,3]) # => [1,2,3] is a list

Recall our factorial example on page 55:

mm/factorial1.exs
defmodule Factorial do

def of(0), do: 1
def of(n), do: n * of(n-1)

end

If we were to pass it a negative number, it would loop forever—no matter how
many times you decrement n, it will never be zero. So it is a good idea to add
a guard clause to stop this from happening.

mm/factorial2.exs
defmodule Factorial do

def of(0), do: 1
def of(n) when is_integer(n) and n > 0 do

n * of(n-1)
end

end

If you run this with a negative argument, none of the functions will match:

Chapter 6. Modules and Named Functions • 58

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/guard.exs
http://media.pragprog.com/titles/elixir16/code/mm/factorial1.exs
http://media.pragprog.com/titles/elixir16/code/mm/factorial2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> c "factorial2.exs"
[Factorial]
iex> Factorial.of -100
** (FunctionClauseError) no function clause matching in Factorial.of/1...

Notice we’ve also added a type constraint: the parameter must be an integer.

Guard-Clause Limitations
You can write only a subset of Elixir expressions in guard clauses. The follow-
ing list comes from the Getting Started guide.1

Comparison operators
==, !=, ===, !==, >, <, <=, >=

Boolean and negation operators
or, and, not, !. Note that || and && are not allowed.

Arithmetic operators
+, -, *, /

Join operators
<> and ++, as long as the left side is a literal

The in operator
Membership in a collection or range

Type-check functions
These built-in Erlang functions return true if their argument is a given
type. You can find their documentation online.2

is_floatis_exceptionis_booleanis_bitstringis_binaryis_atom
is_pidis_numberis_mapis_listis_integeris_function

is_tupleis_referenceis_recordis_port

Other functions
These built-in functions return values (not true or false). Their documenta-
tion is online, on the same page as the type-check functions.

div(number,number)byte_size(bitstring)bit_size(bitstring)abs(number)
length(list)hd(list)float(term)elem(tuple, n)
round(number)rem(number,number)node(pid|ref|port)node()
tuple_size(tuple)trunc(number)tl(list)self()

1. http://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses
2. http://erlang.org/doc/man/erlang.html#is_atom-1

report erratum • discuss

Guard Clauses • 59

http://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses
http://erlang.org/doc/man/erlang.html#is_atom-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Guard Clauses vs. Conditional Logic

Have another look at our factorial function:

def of(0), do: 1
def of(n) when is_integer(n) and n > 0 do

n * of(n-1)
end

You might think of writing the code like this:

def of(0), do: 1
def of(n) do

if n < 0 do
raise "factorial called on a negative number"

else
n * of(n-1)

end
end

Logically these are the same, right? Both versions raise an exception when passed a
negative number.

But they aren’t. In the second case, the of/1 function is defined for any input. But in
the first case, it isn’t defined at all for negative parameters. And that’s what we really
want: the first example makes it explicit that the domain of our function is nonnegative
integers.

The difference between the two examples is subtle, but the first communicates what
we want more accurately.

Default Parameters
When you define a named function, you can give a default value to any of its
parameters by using the syntax param \\ value. When you call a function that
is defined with default parameters, Elixir compares the number of arguments
you are passing with the number of required parameters for the function. If
you’re passing fewer arguments than the number of required parameters,
then there’s no match. If the two numbers are equal, then the required
parameters take the values of the passed arguments, and the other parameters
take their default values. If the count of passed arguments is greater than
the number of required parameters, Elixir uses the excess to override the
default values of some or all parameters. Parameters are matched left to right.

mm/default_params.exs
defmodule Example do

def func(p1, p2 \\ 2, p3 \\ 3, p4) do
IO.inspect [p1, p2, p3, p4]

end
end

Chapter 6. Modules and Named Functions • 60

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/default_params.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Example.func("a", "b") # => ["a",2,3,"b"]
Example.func("a", "b", "c") # => ["a","b",3,"c"]
Example.func("a", "b", "c", "d") # => ["a","b","c","d"]

Default arguments can behave surprisingly when Elixir does pattern matching.
For example, compile the following:

def func(p1, p2 \\ 2, p3 \\ 3, p4) do
IO.inspect [p1, p2, p3, p4]

end

def func(p1, p2) do
IO.inspect [p1, p2]

end

and you’ll get this error:

** (CompileError) default_params.exs:7: def func/2 conflicts with
defaults from def func/4

That’s because the first function definition (with the default parameters)
matches any call with two, three, or four arguments.

There’s one more thing with default parameters. Here’s a function with mul-
tiple heads that also has a default parameter:

mm/default_params1.exs
defmodule DefaultParams1 do

def func(p1, p2 \\ 123) do
IO.inspect [p1, p2]

end

def func(p1, 99) do
IO.puts "you said 99"

end

end

If you compile this, you’ll get an error:

warning: definitions with multiple clauses and default values require a
function head. Instead of this:

def foo(:first_clause, b \\ :default) do ... end
def foo(:second_clause, b) do ... end

one should write this:

def foo(a, b \\ :default)
def foo(:first_clause, b) do ... end
def foo(:second_clause, b) do ... end

def func/2 has multiple clauses and defines defaults in a clause with a body
code/mm/default_params1.exs:8

report erratum • discuss

Default Parameters • 61

http://media.pragprog.com/titles/elixir16/code/mm/default_params1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

warning: variable p1 is unused
code/mm/default_params1.exs:8

warning: this clause cannot match because a previous clause at
line 4 always matches code/mm/default_params1.exs:8

The intent is to reduce confusion that can arise with defaults. Add a function
head with no body that contains the default parameters, and use regular
parameters for the rest. The defaults will apply to all calls to the function.

mm/default_params2.exs
defmodule Params do

def func(p1, p2 \\ 123)

def func(p1, p2) when is_list(p1) do
"You said #{p2} with a list"

end

def func(p1, p2) do
"You passed in #{p1} and #{p2}"

end

end

IO.puts Params.func(99) # You passed in 99 and 123
IO.puts Params.func(99, "cat") # You passed in 99 and cat
IO.puts Params.func([99]) # You said 123 with a list
IO.puts Params.func([99], "dog") # You said dog with a list

Your Turn
➤ Exercise: ModulesAndFunctions-6

I’m thinking of a number between 1 and 1000.…

The most efficient way to find the number is to guess halfway between
the low and high numbers of the range. If our guess is too big, then the
answer lies between the bottom of the range and one less than our guess.
If our guess is too small, then the answer lies between one more than our
guess and the end of the range.

Your API will be guess(actual, range), where range is an Elixir range. Your
output should look similar to this:

iex> Chop.guess(273, 1..1000)
Is it 500
Is it 250
Is it 375
Is it 312
Is it 281
Is it 265
Is it 273
273

Chapter 6. Modules and Named Functions • 62

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/default_params2.exs
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-6
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Hints:

– You may need to implement helper functions with an additional
parameter (the currently guessed number).

– The div(a,b) function performs integer division.

– Guard clauses are your friends.

– Patterns can match the low and high parts of a range (a..b=4..8).

Private Functions
The defp macro defines a private function—one that can be called only within
the module that declares it.

You can define private functions with multiple heads, just as you can with
def. However, you cannot have some heads private and others public. That
is, the following code is not valid:

def fun(a) when is_list(a), do: true
defp fun(a), do: false

The Amazing Pipe Operator: |>
I’ve saved the best for last, at least when it comes to functions.

We’ve all seen code like this:

people = DB.find_customers
orders = Orders.for_customers(people)
tax = sales_tax(orders, 2018)
filing = prepare_filing(tax)

Bread-and-butter programming. We did it because the alternative was to write

filing = prepare_filing(sales_tax(Orders.for_customers(DB.find_customers), 2018))

and that’s the kind of code that you use to get kids to eat their vegetables.
Not only is it hard to read, but you have to read it inside out if you want to
see the order in which things get done.

Elixir has a better way of writing it:

filing = DB.find_customers
|> Orders.for_customers
|> sales_tax(2018)
|> prepare_filing

report erratum • discuss

Private Functions • 63

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The |> operator takes the result of the expression to its left and inserts it as
the first parameter of the function invocation to its right. So the list of cus-
tomers the first call returns becomes the argument passed to the for_customers
function. The resulting list of orders becomes the first argument to sales_tax,
and the given parameter, 2018, becomes the second.

val |> f(a,b) is basically the same as calling f(val,a,b), and

list
|> sales_tax(2018)
|> prepare_filing

is the same as prepare_filing(sales_tax(list, 2018)).

In the previous example, I wrote each term in the expression on a separate
line, and that’s perfectly valid Elixir. But you can also chain terms on the
same line:

iex> (1..10) |> Enum.map(&(&1*&1)) |> Enum.filter(&(&1 < 40))
[1, 4, 9, 16, 25, 36]

Note that I had to use parentheses in that code—the & shortcut and the pipe
operator fight otherwise.

Let me repeat that—you should always use parentheses around function
parameters in pipelines.

The key aspect of the pipe operator is that it lets you write code that pretty
much follows your spec’s form. For the sales-tax example, you might have
jotted this on some paper:

• Get the customer list.
• Generate a list of their orders.
• Calculate tax on the orders.
• Prepare the filing.

To take this from a napkin spec to running code, you just put |> between the
items and implement each as a function.

DB.find_customers
|> Orders.for_customers
|> sales_tax(2018)
|> prepare_filing

Programming is transforming data, and the |> operator makes that transfor-
mation explicit.

And now this book’s subtitle makes sense.

Chapter 6. Modules and Named Functions • 64

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Modules
Modules provide namespaces for things you define. We’ve already seen them
encapsulating named functions. They also act as wrappers for macros, structs,
protocols, and other modules.

If we want to reference a function defined in a module from outside that
module, we need to prefix the reference with the module’s name. We don’t
need that prefix if code references something inside the same module as itself,
as in the following example:

defmodule Mod do
def func1 do

IO.puts "in func1"
end
def func2 do

func1
IO.puts "in func2"

end
end

Mod.func1
Mod.func2

func2 can call func1 directly because it is inside the same module. Outside the
module, you have to use the fully qualified name, Mod.func1.

Just as you do in your favorite language, Elixir programmers use nested
modules to impose structure for readability and reuse. After all, every pro-
grammer is a library writer.

To access a function in a nested module from the outside scope, prefix it with
all the module names. To access it within the containing module, use either
the fully qualified name or just the inner module name as a prefix.

defmodule Outer do
defmodule Inner do

def inner_func do
end

end

def outer_func do
Inner.inner_func

end
end

Outer.outer_func
Outer.Inner.inner_func

report erratum • discuss

Modules • 65

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Module nesting in Elixir is an illusion—all modules are defined at the top
level. When we define a module inside another, Elixir simply prepends the
outer module name to the inner module name, putting a dot between the two.
This means we can directly define a nested module.

defmodule Mix.Tasks.Doctest do
def run do
end

end

Mix.Tasks.Doctest.run

It also means there’s no particular relationship between the modules Mix and
Mix.Tasks.Doctest.

Directives for Modules
Elixir has three directives that simplify working with modules. All three are
executed as your program runs, and the effect of all three is lexically scoped—it
starts at the point the directive is encountered, and stops at the end of the
enclosing scope. This means a directive in a module definition takes effect
from the place you wrote it until the end of the module; a directive in a func-
tion definition runs to the end of the function.

The import Directive
The import directive brings a module’s functions and/or macros into the current
scope. If you use a particular module a lot in your code, import can cut down
the clutter in your source files by eliminating the need to repeat the module
name time and again.

For example, if you import the flatten function from the List module, you’d be
able to call it in your code without having to specify the module name.

mm/import.exs
defmodule Example do

def func1 do
List.flatten [1,[2,3],4]

end
def func2 do

import List, only: [flatten: 1]
flatten [5,[6,7],8]

end
end

The full syntax of import is

import Module [, only:|except:]

Chapter 6. Modules and Named Functions • 66

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/import.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The optional second parameter lets you control which functions or macros
are imported. You write only: or except:, followed by a list of name: arity pairs. It
is a good idea to use import in the smallest possible enclosing scope and to
use only: to import just the functions you need.

import List, only: [flatten: 1, duplicate: 2]

Alternatively, you can give only: one of the atoms :functions or :macros, and import
will bring in only functions or macros.

The alias Directive
The alias directive creates an alias for a module. One obvious use is to cut
down on typing.

defmodule Example do
def compile_and_go(source) do

alias My.Other.Module.Parser, as: Parser
alias My.Other.Module.Runner, as: Runner
source
|> Parser.parse()
|> Runner.execute()

end
end

We could have abbreviated these alias directives to

alias My.Other.Module.Parser
alias My.Other.Module.Runner

because the as: parameters default to the last part of the module name. We
could even take this further, and do this:

alias My.Other.Module.{Parser, Runner}

The require Directive
You require a module if you want to use any macros it defines. This ensures
that the macro definitions are available when your code is compiled. We’ll
talk about require when we discuss macros on page 303.

Module Attributes
Elixir modules each have associated metadata. Each item of metadata is
called an attribute of the module and is identified by a name. Inside a module,
you can access these attributes by prefixing the name with an at sign (@).
You give an attribute a value using the syntax

@name value

report erratum • discuss

Module Attributes • 67

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This works only at the top level of a module—you can’t set an attribute inside
a function definition. You can, however, access attributes inside functions.

mm/attributes.exs
defmodule Example do

@author "Dave Thomas"
def get_author do

@author
end

end
IO.puts "Example was written by #{Example.get_author}"

You can set the same attribute multiple times in a module. If you access that
attribute in a named function in that module, the value you see will be the
value in effect when the function is defined.

mm/attributes1.exs
defmodule Example do

@attr "one"
def first, do: @attr
@attr "two"
def second, do: @attr

end
IO.puts "#{Example.second} #{Example.first}" # => two one

These attributes are not variables in the conventional sense. Use them for
configuration and metadata only. (Many Elixir programmers employ them
where Java or Ruby programmers might use constants.)

Module Names: Elixir, Erlang, and Atoms
When we write modules in Elixir, they have names such as String or PhotoAlbum.
We call functions in them using calls such as String.length("abc").

What’s happening here is subtle. Internally, module names are just atoms.
When you write a name starting with an uppercase letter, such as IO, Elixir
converts it internally into an atom of the same name with Elixir. prepended.
So IO becomes Elixir.IO and Dog becomes Elixir.Dog.

iex> is_atom IO
true
iex> to_string IO
"Elixir.IO"
iex> :"Elixir.IO" === IO
true

So a call to a function in a module is really an atom followed by a dot followed
by the function name. And, indeed, we can call functions like this:

Chapter 6. Modules and Named Functions • 68

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/mm/attributes.exs
http://media.pragprog.com/titles/elixir16/code/mm/attributes1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> IO.puts 123
123
:ok
iex> :"Elixir.IO".puts 123
123
:ok

and even

iex> my_io = IO
IO
iex> my_io.puts 123
123
:ok

Calling a Function in an Erlang Library
The Erlang conventions for names are different—variables start with an
uppercase letter and atoms are simple lowercase names. So, for example, the
Erlang module timer is called just that, the atom timer. In Elixir we write that
as :timer. If you want to refer to the tc function in timer, you’d write :timer.tc.
(Note the colon at the start.)

Say we want to output a floating-point number in a three-character-wide field
with one decimal place. Erlang has a function for this. A search for erlang format
takes us to the description of the format function in the Erlang io module.3

Reading the description, we see that Erlang expects us to call io.format. So, in
Elixir we simply change the Erlang module name to an Elixir atom:

iex> :io.format("The number is ~3.1f~n", [5.678])
The number is 5.7
:ok

Finding Libraries
If you’re looking for a library to use in your app, you’ll want to look first for
existing Elixir modules. The built-in ones are documented on the Elixir web-
site,4 and others are listed at hex.pm and on GitHub (search for elixir).

If that fails, search for a built-in Erlang library or search the web.5 If you find
something written in Erlang, you’ll be able to use it in your project (we’ll
cover how in the chapter on projects, on page 141). But be aware that the
Erlang documentation for a library follows Erlang conventions. Variables start

3. http://erlang.org/doc/man/io.html#format-2
4. http://elixir-lang.org/docs/
5. http://erlang.org/doc/ and http://erldocs.com/19.0/ (Note that the latter is slightly out of date.)

report erratum • discuss

Calling a Function in an Erlang Library • 69

http://hex.pm
http://erlang.org/doc/man/io.html#format-2
http://elixir-lang.org/docs/
http://erlang.org/doc/
http://erldocs.com/19.0/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

with uppercase letters, and identifiers that start with a lowercase letter are
atoms (so Erlang would say tomato and Elixir would say :tomato). A summary
of the differences between Elixir and Erlang is available online.6

Now that we’ve looked at functions, let’s move on to the data they manipulate.
And where better to start than with lists? They’re the subject of the next
chapter.

Your Turn
➤ Exercise: ModulesAndFunctions-7

Find the library functions to do the following, and then use each in IEx.
(If the word Elixir or Erlang appears at the end of the challenge, then you’ll
find the answer in that set of libraries.)

– Convert a float to a string with two decimal digits. (Erlang)

– Get the value of an operating-system environment variable. (Elixir)

– Return the extension component of a file name (so return .exs if given
"dave/test.exs"). (Elixir)

– Return the process’s current working directory. (Elixir)

– Convert a string containing JSON into Elixir data structures. (Just
find; don’t install.)

– Execute a command in your operating system’s shell.

6. http://elixir-lang.org/crash-course.html

Chapter 6. Modules and Named Functions • 70

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-7
http://elixir-lang.org/crash-course.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 7

In this chapter, you'll see:
• The recursive structure of lists
• Traversing and building lists
• Accumulators
• Implementing map and reduce

Lists and Recursion
When we program with lists in conventional languages, we treat them as
things to be iterated—it seems natural to loop over them. So why do we have
a chapter on lists and recursion? Because if you look at the problem in the
right way, recursion is a perfect tool for processing lists.

Heads and Tails
Earlier we said a list may either be empty or consist of a head and a tail. The
head contains a value and the tail is itself a list. This is a recursive definition.

We’ll represent the empty list like this: [].

Let’s imagine we could represent the split between the head and the tail using
a pipe character: |. The single-element list we normally write as [3] can be
written as the value 3 joined to the empty list:

[3 | []]

(I’ve highlighted the inner list.)

When we see the pipe character, we say that what’s on the left is the head of
a list and what’s on the right is the tail.

Let’s look at the list [2, 3]. The head is 2, and the tail is the single-element list
containing 3. And we know what that list looks like—it is our previous
example. So we could write [2,3] as

[2 | [3 | []]]

At this point, part of your brain is telling you to go read today’s XKCD—this
list stuff can’t be useful. Ignore that small voice, just for a second. We’re about
to do something magical. But before we do, let’s add one more term, making

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

our list [1, 2, 3]. This is the head 1 followed by the list [2, 3], which is what we
derived a moment ago:

[1 | [2 | [3 | []]]

This is valid Elixir syntax. Type it into IEx.

iex> [1 | [2 | [3 | []]]]
[1, 2, 3]

And here’s the magic. When we discussed pattern matching, we said the
pattern could be a list, and the values in that list would be assigned from the
right-hand side.

iex> [a, b, c] = [1, 2, 3]
[1, 2, 3]
iex> a
1
iex> b
2
iex> c
3

We can also use the pipe character in the pattern. What’s to the left of it
matches the head value of the list, and what’s to the right matches the tail.

iex> [head | tail] = [1, 2, 3]
[1, 2, 3]
iex> head
1
iex> tail
[2, 3]

Using Head and Tail to Process a List
Now we can split a list into its head and its tail, and we can construct a list
from a value and a list, which become the head and tail of that new list.

So why talk about lists after we talk about modules and functions? Because
lists and recursive functions go together like fish and chips. Let’s look at
finding the length of a list.

• The length of an empty list is 0.
• The length of a list is 1 plus the length of that list’s tail.

Chapter 7. Lists and Recursion • 72

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

How IEx Displays Lists

In Chapter 11, Strings and Binaries, on page 117, you’ll see that Elixir has two repre-
sentations for strings. One is the familiar sequence of characters in consecutive
memory locations. Literals written with double quotes use this form.

The second form, using single quotes, represents a string as a list of integer codepoints.
So the string 'cat' is the three codepoints: 99, 97, and 116.

This is a headache for IEx. When it sees a list like [99,97,116] it doesn’t know if it is
supposed to be the string 'cat' or a list of three numbers. So it uses a heuristic. If all
the values in a list represent printable characters, it displays the list as a string;
otherwise it displays a list of integers.

iex≻ [99, 97, 116]
'cat'
iex≻ [99, 97, 116, 0] # '0' is nonprintable
[99, 97, 116, 0]

In Chapter 11, Strings and Binaries, on page 117, we’ll cover how to bypass this
behavior. In the meantime, don’t be surprised if a string pops up when you were
expecting a list.

Writing the list-length algorithm in Elixir is easy:

lists/mylist.exs
defmodule MyList do

def len([]), do: 0
def len([head|tail]), do: 1 + len(tail)

end

The only tricky part is the definition of the function’s second variant:

def len([head | tail]) ...

This is a pattern match for any nonempty list. When it does match, the variable
head will hold the value of the first element of the list, and tail will hold the
rest of the list. (And remember that every list is terminated by an empty list,
so the tail can be [].)

Let’s see this at work with the list [11, 12, 13, 14, 15]. At each step, we take
off the head and add 1 to the length of the tail:

len([11,12,13,14,15])
= 1 + len([12,13,14,15])
= 1 + 1 + len([13,14,15])
= 1 + 1 + 1 + len([14,15])
= 1 + 1 + 1 + 1 + len([15])
= 1 + 1 + 1 + 1 + 1 + len([])
= 1 + 1 + 1 + 1 + 1 + 0
= 5

report erratum • discuss

Using Head and Tail to Process a List • 73

http://media.pragprog.com/titles/elixir16/code/lists/mylist.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Let’s try our code to see if theory works in practice:

iex> c "mylist.exs"
...mylist.exs:3: variable head is unused
[MyList]
iex> MyList.len([])
0
iex> MyList.len([11,12,13,14,15])
5

It works, but we have a compilation warning—we never used the variable head
in the body of our function. We can fix that, and make our code more explicit,
using the special variable _ (underscore), which acts as a placeholder. We can
also use an underscore in front of any variable name to turn off the warning
if that variable isn’t used. I sometimes like to do this to document the unused
parameter.

lists/mylist1.exs
defmodule MyList do

def len([]), do: 0
def len([_head | tail]), do: 1 + len(tail)

end

When we compile, the warning is gone. (However, if you compile the second
version of MyList, you may get a warning about “redefining module MyList.” This
is just Elixir being cautious.)

iex> c "mylist1.exs"
[MyList]
iex> MyList.len([1,2,3,4,5])
5
iex> MyList.len(["cat", "dog"])
2

Using Head and Tail to Build a List
Let’s get more ambitious. Let’s write a function that takes a list of numbers
and returns a new list containing the square of each. We don’t show it, but
these definitions are also inside the MyList module.

lists/mylist1.exs
def square([]), do: []
def square([head | tail]), do: [head*head | square(tail)]

There’s a lot going on here. First, look at the parameter patterns for the two
definitions of square. The first matches an empty list and the second matches
all other lists.

Chapter 7. Lists and Recursion • 74

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/lists/mylist1.exs
http://media.pragprog.com/titles/elixir16/code/lists/mylist1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Second, look at the body of the second definition:

def square([head | tail]), do: [head*head | square(tail)]

When we match a nonempty list, we return a new list whose head is the
square of the original list’s head and whose tail is a list of squares of the tail.
This is the recursive step.

Let’s try it:

iex> c "mylist1.exs"
[MyList]
iex> MyList.square [] # this calls the 1st definition
[]
iex> MyList.square [4,5,6] # and this calls the 2nd
[16, 25, 36]

Let’s do something similar—a function that adds 1 to every element in the list:

lists/mylist1.exs
def add_1([]), do: []
def add_1([head | tail]), do: [head+1 | add_1(tail)]

And call it:

iex> c "mylist1.exs"
[MyList]
iex> MyList.add_1 [1000]
[1001]
iex> MyList.add_1 [4,6,8]
[5, 7, 9]

Creating a Map Function
With both square and add_1, all the work is done in the second function defini-
tion. And that definition looks about the same for each—it returns a new list
whose head is the result of either squaring or incrementing the head of its
argument and whose tail is the result of calling itself recursively on the tail
of the argument. Let’s generalize this. We’ll define a function called map that
takes a list and a function and returns a new list containing the result of
applying that function to each element in the original.

lists/mylist1.exs
def map([], _func), do: []
def map([head | tail], func), do: [func.(head) | map(tail, func)]

The map function is pretty much identical to the square and add_1 functions. It
returns an empty list if passed an empty list; otherwise it returns a list where
the head is the result of calling the passed-in function and the tail is a
recursive call to itself. Note that in the case of an empty list, we use _func as

report erratum • discuss

Creating a Map Function • 75

http://media.pragprog.com/titles/elixir16/code/lists/mylist1.exs
http://media.pragprog.com/titles/elixir16/code/lists/mylist1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

the second parameter. The underscore prevents Elixir from warning us about
an unused variable.

To call this function, pass in a list and a function (defined using fn):

iex> c "mylist1.exs"
[MyList]
iex> MyList.map [1,2,3,4], fn (n) -> n*n end
[1, 4, 9, 16]

A function is just a built-in type, defined between fn and the end. Here we pass
a function as the second argument (func) to map. This is invoked inside map
using func.(head), which squares the value in head, using the result to build the
new list.

We can call map with a different function:

iex> MyList.map [1,2,3,4], fn (n) -> n+1 end
[2, 3, 4, 5]

And another:

iex> MyList.map [1,2,3,4], fn (n) -> n > 2 end
[false, false, true, true]

And we can do the same using the & shortcut notation:

iex> MyList.map [1,2,3,4], &(&1 + 1)
[2, 3, 4, 5]
iex> MyList.map [1,2,3,4], &(&1 > 2)
[false, false, true, true]

Reducing a List to a Single Value
The map/2 function we just wrote abstracts the idea of applying a function to
each element of a list independently.

But what if we want to apply that function across the elements? How could
we create an abstraction that would let us sum a list, or find the product of
its elements, or find the largest element?

The sum function reduces a collection to a single value. Other functions need
to do something similar—return the greatest/least value, the product of the
elements, a string containing a concatenation of elements, and so on. How
can we write a general-purpose function that reduces a collection to a value?

We know it has to take a collection. We also know we need to pass in some
initial value (just like our sum/1 function passed a 0 as an initial value to its

Chapter 7. Lists and Recursion • 76

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

helper). Additionally, we need to pass in a function that takes the current
value of the reduction along with the next element of the collection, and
returns the next value of the reduction. So, it looks like our reduce function
will be called with three arguments:

reduce(collection, initial_value, fun)

Now let’s think about the recursive design:

• reduce([], value, _fun) → value
• reduce([head | tail], value, fun) → reduce(tail, fun.(head, value), fun)

reduce applies the function to the list’s head and the current value, and passes
the result as the new current value when reducing the list’s tail.

Here’s our code for reduce. See how closely it follows the design:

lists/reduce.exs
defmodule MyList do

def reduce([], value, _) do
value

end
def reduce([head | tail], value, func) do

reduce(tail, func.(head, value), func)
end

end

And, again, we can use the shorthand notation to pass in the function:

iex> c "reduce.exs"
[MyList]
iex> MyList.reduce([1,2,3,4,5], 0, &(&1 + &2))
15
iex> MyList.reduce([1,2,3,4,5], 1, &(&1 * &2))
120

Your Turn
➤ Exercise: ListsAndRecursion-1

Write a mapsum function that takes a list and a function. It applies the
function to each element of the list and then sums the result, so

iex> MyList.mapsum [1, 2, 3], &(&1 * &1)
14

➤ Exercise: ListsAndRecursion-2
Write a max(list) that returns the element with the maximum value in the
list. (This is slightly trickier than it sounds.)

report erratum • discuss

Reducing a List to a Single Value • 77

http://media.pragprog.com/titles/elixir16/code/lists/reduce.exs
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

➤ Exercise: ListsAndRecursion-3
An Elixir single-quoted string is actually a list of individual character
codes. Write a caesar(list, n) function that adds n to each list element,
wrapping if the addition results in a character greater than z.

iex> MyList.caesar('ryvkve', 13)
?????? :)

More Complex List Patterns
Not every list problem can be easily solved by processing one element at a
time. Fortunately, the join operator, |, supports multiple values to its left.
Thus, you could write

iex> [1, 2, 3 | [4, 5, 6]]
[1, 2, 3, 4, 5, 6]

The same thing works in patterns, so you can match multiple individual ele-
ments as the head. For example, this program swaps pairs of values in a list:

lists/swap.exs
defmodule Swapper do

def swap([]), do: []
def swap([a, b | tail]), do: [b, a | swap(tail)]
def swap([_]), do: raise "Can't swap a list with an odd number of elements"

end

We can play with it in IEx:

iex> c "swap.exs"
[Swapper]
iex> Swapper.swap [1,2,3,4,5,6]
[2, 1, 4, 3, 6, 5]
iex> Swapper.swap [1,2,3,4,5,6,7]
** (RuntimeError) Can't swap a list with an odd number of elements

The third definition of swap matches a list with a single element. This will
happen if we get to the end of the recursion and have only one element left.
Given that we take two values off the list on each cycle, the initial list must
have had an odd number of elements.

Lists of Lists
Let’s imagine we had recorded temperatures and rainfall at a number of
weather stations. Each reading looks like this:

[timestamp, location_id, temperature, rainfall]

Chapter 7. Lists and Recursion • 78

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-3
http://media.pragprog.com/titles/elixir16/code/lists/swap.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Our code is passed a list containing a number of these readings, and we want
to report on the conditions for one particular location, number 27.

lists/weather.exs
defmodule WeatherHistory do

def for_location_27([]), do: []
def for_location_27([[time, 27, temp, rain] | tail]) do

[[time, 27, temp, rain] | for_location_27(tail)]
end
def for_location_27([_ | tail]), do: for_location_27(tail)

end

This is a standard recurse until the list is empty stanza. But look at our
function definition’s second clause. Where we’d normally match into a variable
called head, here the pattern is

for_location_27([[time, 27, temp, rain] | tail])

For this to match, the head of the list must itself be a four-element list, and
the second element of this sublist must be 27. This function will execute only
for entries from the desired location. But when we do this kind of filtering,
we also have to remember to deal with the case when our function doesn’t
match. That’s what the third line does. We could have written

for_location_27([[time, _, temp, rain] | tail])

but in reality we don’t care what is in the head at this point.

In the same module we define some simple test data:

lists/weather.exs
def test_data do

[
[1366225622, 26, 15, 0.125],
[1366225622, 27, 15, 0.45],
[1366225622, 28, 21, 0.25],
[1366229222, 26, 19, 0.081],
[1366229222, 27, 17, 0.468],
[1366229222, 28, 15, 0.60],
[1366232822, 26, 22, 0.095],
[1366232822, 27, 21, 0.05],
[1366232822, 28, 24, 0.03],
[1366236422, 26, 17, 0.025]

]
end

We can use that to play with our function in IEx. To make this easier, I’m
using the import function. This adds the functions in WeatherHistory to our local

report erratum • discuss

More Complex List Patterns • 79

http://media.pragprog.com/titles/elixir16/code/lists/weather.exs
http://media.pragprog.com/titles/elixir16/code/lists/weather.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

name scope. After calling import we don’t have to put the module name in front
of every function call.

iex> c "weather.exs"
[WeatherHistory]
iex> import WeatherHistory
WeatherHistory
iex> for_location_27(test_data)
[[1366225622, 27, 15, 0.45], [1366229222, 27, 17, 0.468],
[1366232822, 27, 21, 0.05]]

Our function is specific to a particular location, which is pretty limiting. We’d
like to be able to pass in the location as a parameter. We can use pattern
matching for this.

lists/weather2.exs
defmodule WeatherHistory do

def for_location([], _target_loc), do: []

def for_location([[time, target_loc, temp, rain] | tail], target_loc) do➤

[[time, target_loc, temp, rain] | for_location(tail, target_loc)]
end

def for_location([_ | tail], target_loc), do: for_location(tail, target_loc)

end

Now the second function fires only when the location extracted from the list
head equals the target location passed as a parameter.

But we can improve on this. Our filter doesn’t care about the other three fields
in the head—it just needs the location. But we do need the value of the head
itself to create the output list. Fortunately, Elixir pattern matching is recursive
and we can match patterns inside patterns.

lists/weather3.exs
defmodule WeatherHistory do

def for_location([], _target_loc), do: []

def for_location([head = [_, target_loc, _, _] | tail], target_loc) do➤

[head | for_location(tail, target_loc)]
end

def for_location([_ | tail], target_loc), do: for_location(tail, target_loc)

end

The key change here is this line:

def for_location([head = [_, target_loc, _, _] | tail], target_loc)

Chapter 7. Lists and Recursion • 80

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/lists/weather2.exs
http://media.pragprog.com/titles/elixir16/code/lists/weather3.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Compare that with the previous version:

def for_location([[time, target_loc, temp, rain] | tail], target_loc)

In the new version, we use placeholders for the fields we don’t care about.
But we also match the entire four-element array into the parameter head. It’s
as if we said, “Match the head of the list where the second element is matched
to target_loc and then match that whole head with the variable head.” We’ve
extracted an individual component of the sublist as well as the entire sublist.

In the original body of for_location, we generated our result list using the indi-
vidual fields:

def for_location([[time, target_loc, temp, rain] | tail], target_loc)
[[time, target_loc, temp, rain] | for_location(tail, target_loc)]

end

In the new version, we can just use the head, making it a lot clearer:

def for_location([head = [_, target_loc, _, _] | tail], target_loc) do
[head | for_location(tail, target_loc)]

end

Your Turn
➤ Exercise: ListsAndRecursion-4

Write a function MyList.span(from, to) that returns a list of the numbers from
from up to to.

The List Module in Action
The List module provides a set of functions that operate on lists.

#
Concatenate lists
#
iex> [1,2,3] ++ [4,5,6]
[1, 2, 3, 4, 5, 6]
#
Flatten
#
iex> List.flatten([[[1], 2], [[[3]]]])
[1, 2, 3]
#
Folding (like reduce, but can choose direction)
#
iex> List.foldl([1,2,3], "", fn value, acc -> "#{value}(#{acc})" end)
"3(2(1()))"
iex> List.foldr([1,2,3], "", fn value, acc -> "#{value}(#{acc})" end)
"1(2(3()))"

report erratum • discuss

The List Module in Action • 81

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-4
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

#
Updating in the middle (not a cheap operation)
#
iex> list = [1, 2, 3]
[1, 2, 3]
iex> List.replace_at(list, 2, "buckle my shoe")
[1, 2, "buckle my shoe"]
#
Accessing tuples within lists
#
iex> kw = [{:name, "Dave"}, {:likes, "Programming"}, {:where, "Dallas", "TX"}]
[{:name, "Dave"}, {:likes, "Programming"}, {:where, "Dallas", "TX"}]
iex> List.keyfind(kw, "Dallas", 1)
{:where, "Dallas", "TX"}
iex> List.keyfind(kw, "TX", 2)
{:where, "Dallas", "TX"}
iex> List.keyfind(kw, "TX", 1)
nil
iex> List.keyfind(kw, "TX", 1, "No city called TX")
"No city called TX"
iex> kw = List.keydelete(kw, "TX", 2)
[name: "Dave", likes: "Programming"]
iex> kw = List.keyreplace(kw, :name, 0, {:first_name, "Dave"})
[first_name: "Dave", likes: "Programming"]

Get Friendly with Lists
Lists are the natural data structure to use when you have a stream of values
to handle. You’ll use them to parse data, handle collections of values, and
record the results of a series of function calls. It’s worth spending a while
getting comfortable with them.

Next we’ll look at the various dictionary types, including maps. These let us
organize data into collections of key/value pairs.

Chapter 7. Lists and Recursion • 82

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 8

In this chapter, you'll see:
• The two and a half dictionary data types
• Pattern matching and updating maps
• Structs
• Nested data structures

Maps, Keyword Lists, Sets, and Structs
A dictionary is a data type that associates keys with values.

We’ve already looked briefly at the dictionary types: maps and keyword lists.
In this short chapter we’ll cover how to use them with pattern matching and
how to update them. Then we’ll dive into structs, a special kind of map with
a fixed structure. Finally we’ll explore nested data structures and see how to
alter fields in a map inside another map inside another map.…

First, though, let’s answer a common question—how do we choose an appro-
priate dictionary type for a particular need?

How to Choose Between Maps, Structs, and Keyword Lists
Ask yourself these questions (in this order):

• Do I want to pattern-match against the contents (for example, matching
a dictionary that has a key of :name somewhere in it)?

If so, use a map.

• Will I want more than one entry with the same key?

If so, you’ll have to use the Keyword module.

• Do I need to guarantee the elements are ordered?

If so, again, use the Keyword module.

• Do I have a fixed set of fields (that is, is the structure of the data always
the same)?

If so, use a struct.

• Otherwise, if you’ve reached this point,

Use a map.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Keyword Lists
Keyword lists are typically used in the context of options passed to functions.

maps/keywords.exs
defmodule Canvas do

@defaults [fg: "black", bg: "white", font: "Merriweather"]

def draw_text(text, options \\ []) do
options = Keyword.merge(@defaults, options)
IO.puts "Drawing text #{inspect(text)}"
IO.puts "Foreground: #{options[:fg]}"
IO.puts "Background: #{Keyword.get(options, :bg)}"
IO.puts "Font: #{Keyword.get(options, :font)}"
IO.puts "Pattern: #{Keyword.get(options, :pattern, "solid")}"
IO.puts "Style: #{inspect Keyword.get_values(options, :style)}"

end

end

Canvas.draw_text("hello", fg: "red", style: "italic", style: "bold")

=>
Drawing text "hello"
Foreground: red
Background: white
Font: Merriweather
Pattern: solid
Style: ["italic", "bold"]

For simple access, you can use the access operator, kwlist[key]. In addition,
all the functions of the Keyword and Enum modules are available.1,2

Maps
Maps are the go-to key/value data structure in Elixir. They have good perfor-
mance at all sizes.

Let’s play with the Map API:3

iex> map = %{ name: "Dave", likes: "Programming", where: "Dallas" }
%{likes: "Programming", name: "Dave", where: "Dallas"}
iex> Map.keys map
[:likes, :name, :where]
iex> Map.values map
["Programming", "Dave", "Dallas"]
iex> map[:name]

1. http://elixir-lang.org/docs/master/elixir/Keyword.html
2. http://elixir-lang.org/docs/master/elixir/Enum.html
3. http://elixir-lang.org/docs/master/elixir/Map.html

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 84

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/keywords.exs
http://elixir-lang.org/docs/master/elixir/Keyword.html
http://elixir-lang.org/docs/master/elixir/Enum.html
http://elixir-lang.org/docs/master/elixir/Map.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

"Dave"
iex> map.name
"Dave"
iex> map1 = Map.drop map, [:where, :likes]
%{name: "Dave"}
iex> map2 = Map.put map, :also_likes, "Ruby"
%{also_likes: "Ruby", likes: "Programming", name: "Dave", where: "Dallas"}
iex> Map.keys map2
[:also_likes, :likes, :name, :where]
iex> Map.has_key? map1, :where
false
iex> { value, updated_map } = Map.pop map2, :also_likes
{"Ruby", %{likes: "Programming", name: "Dave", where: "Dallas"}}
iex> Map.equal? map, updated_map
true

Pattern Matching and Updating Maps
The question we most often ask of our maps is, “Do you have the following
keys (and maybe values)?” For example, given this map:

person = %{ name: "Dave", height: 1.88 }

• Is there an entry with the key :name?

iex> %{ name: a_name } = person
%{height: 1.88, name: "Dave"}
iex> a_name
"Dave"

• Are there entries for the keys :name and :height?

iex> %{ name: _, height: _ } = person
%{height: 1.88, name: "Dave"}

• Does the entry with key :name have the value "Dave"?

iex> %{ name: "Dave" } = person
%{height: 1.88, name: "Dave"}

Our map does not have the key :weight, so the following pattern match fails:

iex> %{ name: _, weight: _ } = person
** (MatchError) no match of right hand side value: %{height: 1.88, name: "Dave"}

It’s worth noting how the first pattern match destructured the map, extracting
the value associated with the key :name. We can use this in many ways. Here’s
one example. The for construct lets us iterate over a collection, filtering as we
go. We cover it when we talk about enumerating on page 111. The following
example uses for to iterate over a list of people. Destructuring is used to extract
the height value, which is used to filter the results.

report erratum • discuss

Pattern Matching and Updating Maps • 85

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

maps/query.exs
people = [

%{ name: "Grumpy", height: 1.24 },
%{ name: "Dave", height: 1.88 },
%{ name: "Dopey", height: 1.32 },
%{ name: "Shaquille", height: 2.16 },
%{ name: "Sneezy", height: 1.28 }

]

IO.inspect(for person = %{ height: height } <- people, height > 1.5, do: person)

This produces

[%{height: 1.88, name: "Dave"}, %{height: 2.16, name: "Shaquille"}]

In this code, we feed a list of maps to our comprehension. The generator
clause binds each map (as a whole) to person and binds the height from that
map to height. The filter selects only those maps where the height exceeds 1.5,
and the do block returns the people that match. The comprehension as a
whole returns a list of these people, which IO.inspect prints.

Clearly pattern matching is just pattern matching, so this maps capability
works equally well in cond expressions, function head matching, and any
other circumstances in which patterns are used.

maps/book_room.exs
defmodule HotelRoom do

def book(%{name: name, height: height})
when height > 1.9 do

IO.puts "Need extra-long bed for #{name}"
end

def book(%{name: name, height: height})
when height < 1.3 do

IO.puts "Need low shower controls for #{name}"
end

def book(person) do
IO.puts "Need regular bed for #{person.name}"

end

end

people |> Enum.each(&HotelRoom.book/1)

#=> Need low shower controls for Grumpy
Need regular bed for Dave
Need regular bed for Dopey
Need extra-long bed for Shaquille
Need low shower controls for Sneezy

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 86

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/query.exs
http://media.pragprog.com/titles/elixir16/code/maps/book_room.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Pattern Matching Can’t Bind Keys
You can’t bind a value to a key during pattern matching. You can write this:

iex> %{ 2 => state } = %{ 1 => :ok, 2 => :error }
%{1 => :ok, 2 => :error}
iex> state
:error

but not this:

iex> %{ item => :ok } = %{ 1 => :ok, 2 => :error }
** (CompileError) iex:5: illegal use of variable item in map key…

Pattern Matching Can Match Variable Keys
When we looked at basic pattern matching, we saw that the pin operator on
page 19 uses the value already in a variable on the left-hand side of a match.
We can do the same with the keys of a map:

iex> data = %{ name: "Dave", state: "TX", likes: "Elixir" }
%{likes: "Elixir", name: "Dave", state: "TX"}
iex> for key <- [:name, :likes] do
...> %{ ^key => value } = data
...> value
...> end
["Dave", "Elixir"]

Updating a Map
Maps let us add new key/value entries and update existing entries without
traversing the whole structure. But as with all values in Elixir, a map is
immutable, and so the result of the update is a new map.

The simplest way to update a map is with this syntax:

new_map = %{ old_map | key => value, … }

This creates a new map that is a copy of the old, but the values associated
with the keys on the right of the pipe character are updated:

iex> m = %{ a: 1, b: 2, c: 3 }
%{a: 1, b: 2, c: 3}
iex> m1 = %{ m | b: "two", c: "three" }
%{a: 1, b: "two", c: "three"}
iex> m2 = %{ m1 | a: "one" }
%{a: "one", b: "two", c: "three"}

However, this syntax will not add a new key to a map. To do this, you have
to use the Map.put_new/3 function.

report erratum • discuss

Updating a Map • 87

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Structs
When Elixir sees %{ … } it knows it is looking at a map. But it doesn’t know
much more than that. In particular, it doesn’t know what you intend to do
with the map, whether only certain keys are allowed, or whether some keys
should have default values.

That’s fine for anonymous maps. But what if we want to create a typed map—a
map that has a fixed set of fields and default values for those fields, and that
you can pattern-match by type as well as content.

Enter the struct.

A struct is just a module that wraps a limited form of map. It’s limited because
the keys must be atoms and because these maps don’t have Dict capabilities.
The name of the module becomes the name of the map type.

Inside the module, you use the defstruct macro to define the struct’s members.

maps/defstruct.exs
defmodule Subscriber do

defstruct name: "", paid: false, over_18: true
end

Let’s play with this in IEx:

$ iex defstruct.exs
iex> s1 = %Subscriber{}
%Subscriber{name: "", over_18: true, paid: false}
iex> s2 = %Subscriber{ name: "Dave" }
%Subscriber{name: "Dave", over_18: true, paid: false}
iex> s3 = %Subscriber{ name: "Mary", paid: true }
%Subscriber{name: "Mary", over_18: true, paid: true}

The syntax for creating a struct is the same as the syntax for creating a
map—you simply add the module name between the % and the {.

You access the fields in a struct using dot notation or pattern matching:

iex> s3.name
"Mary"
iex> %Subscriber{name: a_name} = s3
%Subscriber{name: "Mary", over_18: true, paid: true}
iex> a_name
"Mary"

And updates follow suit:

iex> s4 = %Subscriber{ s3 | name: "Marie"}
%Subscriber{name: "Marie", over_18: true, paid: true}

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 88

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/defstruct.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Why are structs wrapped in a module? The idea is that you are likely to want
to add struct-specific behavior.

maps/defstruct1.exs
defmodule Attendee do

defstruct name: "", paid: false, over_18: true

def may_attend_after_party(attendee = %Attendee{}) do
attendee.paid && attendee.over_18

end

def print_vip_badge(%Attendee{name: name}) when name != "" do
IO.puts "Very cheap badge for #{name}"

end

def print_vip_badge(%Attendee{}) do
raise "missing name for badge"

end
end

$ iex defstruct1.exs
iex> a1 = %Attendee{name: "Dave", over_18: true}
%Attendee{name: "Dave", over_18: true, paid: false}
iex> Attendee.may_attend_after_party(a1)
false
iex> a2 = %Attendee{a1 | paid: true}
%Attendee{name: "Dave", over_18: true, paid: true}
iex> Attendee.may_attend_after_party(a2)
true
iex> Attendee.print_vip_badge(a2)
Very cheap badge for Dave
:ok
iex> a3 = %Attendee{}
%Attendee{name: "", over_18: true, paid: false}
iex> Attendee.print_vip_badge(a3)
** (RuntimeError) missing name for badge…

Notice how we could call the functions in the Attendee module to manipulate
the associated struct.

Structs also play a large role when implementing polymorphism, which we’ll
see when we look at protocols on page 329.

Nested Dictionary Structures
The various dictionary types let us associate keys with values. But those
values can themselves be dictionaries. For example, we may have a bug-
reporting system. We could represent this using the following:

report erratum • discuss

Nested Dictionary Structures • 89

http://media.pragprog.com/titles/elixir16/code/maps/defstruct1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

maps/nested.exs
defmodule Customer do

defstruct name: "", company: ""
end

defmodule BugReport do
defstruct owner: %Customer{}, details: "", severity: 1

end

Let’s create a simple report:

iex> report = %BugReport{owner: %Customer{name: "Dave", company: "Pragmatic"},
...> details: "broken"}
%BugReport{details: "broken", severity: 1,

owner: %Customer{company: "Pragmatic", name: "Dave"}}

The owner attribute of the report is itself a Customer struct.

We can access nested fields using regular dot notation:

iex> report.owner.company
"Pragmatic"

But now our customer complains the company name is incorrect—it should
be PragProg. Let’s fix it:

iex> report = %BugReport{ report | owner:
...> %Customer{ report.owner | company: "PragProg" }}
%BugReport{details: "broken",
owner: %Customer{company: "PragProg", name: "Dave"},
severity: 1}

Ugly stuff! We had to update the overall bug report’s owner attribute with an
updated customer structure. This is verbose, hard to read, and error prone.

Fortunately, Elixir has a set of nested dictionary-access functions. One of
these, put_in, lets us set a value in a nested structure:

iex> put_in(report.owner.company, "PragProg")
%BugReport{details: "broken",
owner: %Customer{company: "PragProg", name: "Dave"},
severity: 1}

This isn’t magic—it’s simply a macro that generates the long-winded code
we’d have to have written otherwise.

The update_in function lets us apply a function to a value in a structure.

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 90

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/nested.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> update_in(report.owner.name, &("Mr. " <> &1))
%BugReport{details: "broken",

owner: %Customer{company: "PragProg", name: "Mr. Dave"},
severity: 1}

The other two nested access functions are get_in and get_and_update_in. The
documentation in IEx contains everything you need for these. However, both
of these functions support a cool trick: nested access.

Nested Accessors and Nonstructs
If you are using the nested accessor functions with maps or keyword lists,
you can supply the keys as atoms:

iex> report = %{ owner: %{ name: "Dave", company: "Pragmatic" }, severity: 1}
%{owner: %{company: "Pragmatic", name: "Dave"}, severity: 1}
iex> put_in(report[:owner][:company], "PragProg")
%{owner: %{company: "PragProg", name: "Dave"}, severity: 1}
iex> update_in(report[:owner][:name], &("Mr. " <> &1))
%{owner: %{company: "Pragmatic", name: "Mr. Dave"}, severity: 1}

Dynamic (Runtime) Nested Accessors
The nested accessors we’ve seen so far are macros—they operate at compile
time. As a result, they have some limitations:

• The number of keys you pass a particular call is static.
• You can’t pass the set of keys as parameters between functions.

These are a natural consequence of the way the macros bake their parameters
into code at compile time.

To overcome this, get_in, put_in, update_in, and get_and_update_in can all take a list
of keys as a separate parameter. Adding this parameter changes them from
macros to function calls, so they become dynamic.

FunctionMacro

(dict, keys)noget_in
(dict, keys, value)(path, value)put_in
(dict, keys, fn)(path, fn)update_in
(dict, keys, fn)(path, fn)get_and_update_in

report erratum • discuss

Nested Dictionary Structures • 91

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Here’s a simple example:

maps/dynamic_nested.exs
nested = %{

buttercup: %{
actor: %{

first: "Robin",
last: "Wright"

},
role: "princess"

},
westley: %{

actor: %{
first: "Cary",
last: "Elwes" # typo!

},
role: "farm boy"

}
}

IO.inspect get_in(nested, [:buttercup])
=> %{actor: %{first: "Robin", last: "Wright"}, role: "princess"}

IO.inspect get_in(nested, [:buttercup, :actor])
=> %{first: "Robin", last: "Wright"}

IO.inspect get_in(nested, [:buttercup, :actor, :first])
=> "Robin"

IO.inspect put_in(nested, [:westley, :actor, :last], "Elwes")
=> %{buttercup: %{actor: %{first: "Robin", last: "Wright"}, role: "princess"},
=> westley: %{actor: %{first: "Cary", last: "Elwes"}, role: "farm boy"}}

There’s a cool trick that the dynamic versions of both get_in and get_and_update_in
support—if you pass a function as a key, that function is invoked to return
the corresponding values.

maps/get_in_func.exs
authors = [

%{ name: "José", language: "Elixir" },
%{ name: "Matz", language: "Ruby" },
%{ name: "Larry", language: "Perl" }

]

languages_with_an_r = fn (:get, collection, next_fn) ->
for row <- collection do

if String.contains?(row.language, "r") do
next_fn.(row)

end
end

end

IO.inspect get_in(authors, [languages_with_an_r, :name])
#=> ["José", nil, "Larry"]

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 92

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/dynamic_nested.exs
http://media.pragprog.com/titles/elixir16/code/maps/get_in_func.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The Access Module
The Access module provides a number of predefined functions to use as
parameters to get and get_and_update_in. These functions act as simple filters
while traversing the structures.

The all and at functions only work on lists. all returns all elements in the list,
while at returns the nth element (counting from zero).

maps/access1.exs
cast = [

%{
character: "Buttercup",
actor: %{

first: "Robin",
last: "Wright"

},
role: "princess"

},
%{

character: "Westley",
actor: %{

first: "Cary",
last: "Elwes"

},
role: "farm boy"

}
]

IO.inspect get_in(cast, [Access.all(), :character])
#=> ["Buttercup", "Westley"]

IO.inspect get_in(cast, [Access.at(1), :role])
#=> "farm boy"

IO.inspect get_and_update_in(cast, [Access.all(), :actor, :last],
fn (val) -> {val, String.upcase(val)} end)

#=> {["Wright", "Elwes"],
[%{actor: %{first: "Robin", last: "WRIGHT"}, character: "Buttercup",
role: "princess"},
%{actor: %{first: "Cary", last: "ELWES"}, character: "Westley",
role: "farm boy"}]}

The elem function works on tuples:

maps/access2.exs
cast = [

%{
character: "Buttercup",
actor: {"Robin", "Wright"},
role: "princess"

},

report erratum • discuss

Nested Dictionary Structures • 93

http://media.pragprog.com/titles/elixir16/code/maps/access1.exs
http://media.pragprog.com/titles/elixir16/code/maps/access2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

%{
character: "Westley",
actor: {"Carey", "Elwes"},
role: "farm boy"

}
]

IO.inspect get_in(cast, [Access.all(), :actor, Access.elem(1)])
#=> ["Wright", "Elwes"]

IO.inspect get_and_update_in(cast, [Access.all(), :actor, Access.elem(1)],
fn (val) -> {val, String.reverse(val)} end)

#=> {["Wright", "Elwes"],
[%{actor: {"Robin", "thgirW"}, character: "Buttercup", role: "princess"},
%{actor: {"Carey", "sewlE"}, character: "Westley", role: "farm boy"}]}

The key and key! functions work on dictionary types (maps and structs):

maps/access3.exs
cast = %{

buttercup: %{
actor: {"Robin", "Wright"},
role: "princess"

},
westley: %{

actor: {"Carey", "Elwes"},
role: "farm boy"

}
}

IO.inspect get_in(cast, [Access.key(:westley), :actor, Access.elem(1)])
#=> "Elwes"

IO.inspect get_and_update_in(cast, [Access.key(:buttercup), :role],
fn (val) -> {val, "Queen"} end)

#=> {"princess",
%{buttercup: %{actor: {"Robin", "Wright"}, role: "Queen"},
westley: %{actor: {"Carey", "Elwes"}, role: "farm boy"}}}

Finally, Access.pop lets you remove the entry with a given key from a map or
keyword list. It returns a tuple containing the value associated with the key
and the updated container. nil is returned for the value if the key isn’t in the
container.

The name has nothing to do with the pop stack operation.

iex> Access.pop(%{name: "Elixir", creator: "Valim"}, :name)
{"Elixir", %{creator: "Valim"}}
iex> Access.pop([name: "Elixir", creator: "Valim"], :name)
{"Elixir", [creator: "Valim"]}
iex> Access.pop(%{name: "Elixir", creator: "Valim"}, :year)
{nil, %{creator: "Valim", name: "Elixir"}}

Chapter 8. Maps, Keyword Lists, Sets, and Structs • 94

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/maps/access3.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Sets
Sets are implemented using the module MapSet.

iex> set1 = 1..5 |> Enum.into(MapSet.new)
#MapSet<[1, 2, 3, 4, 5]>
iex> set2 = 3..8 |> Enum.into(MapSet.new)
#MapSet<[3, 4, 5, 6, 7, 8]>
iex> MapSet.member? set1, 3
true
iex> MapSet.union set1, set2
#MapSet<[1, 2, 3, 4, 5, 6, 7, 8]>
iex> MapSet.difference set1, set2
#MapSet<[1, 2]>
iex> MapSet.difference set2, set1
#MapSet<[6, 7, 8]>
iex> MapSet.intersection set2, set1
#MapSet<[3, 4, 5]>

With Great Power Comes Great Temptation
The dictionary types are clearly a powerful tool—you’ll use them all the time.
But you might also be tempted to abuse them. Structs in particular might
lead you into the darkness because you can associate functions with them
in their module definitions. At some point, the old object-orientation neurons
still active in the nether regions of your brain might burst into life and you
might think, “Hey, this is a bit like a class definition.” And you’d be right. You
can write something akin to object-oriented code using structs (or maps) and
modules.

This is a bad idea—not because objects are intrinsically bad, but because
you’ll be mixing paradigms and diluting the benefits a functional approach
gives you.

Stay pure, young coder. Stay pure.

As a way of refocusing you away from the dark side, the next chapter is a
mini diversion into the benefits of separating functions and the data they
work on. And we disguise it in a discussion of types.

report erratum • discuss

Sets • 95

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 9

An Aside—What Are Types?
The preceding two chapters described the basics of lists and maps. But you
may have noticed that, although I talked about them as types, I didn’t really
say what I meant.

The first thing to understand is that the primitive data types are not neces-
sarily the same as the types they can represent. For example, a primitive
Elixir list is just an ordered group of values. We can use the […] literal to
create a list, and the | operator to deconstruct and build lists.

Then there’s another layer. Elixir has the List module, which provides a set of
functions that operate on lists. Often these functions simply use recursion
and the | operator to add this extra functionality.

In my mind, there’s a difference between the primitive list and the functional-
ity of the List module. The primitive list is an implementation, whereas the List
module adds a layer of abstraction. Both implement types, but the type is
different. Primitive lists, for example, don’t have a flatten function.

Maps are also a primitive type. And, like lists, they have an Elixir module
that implements a richer, derived map type.

The code that provides the Keyword type is an Elixir module. But the type is
represented as a list of tuples:

options = [{:width, 72}, {:style, "light"}, {:style, "print"}]

Clearly this is still a list, and all the list functions will work on it. But Elixir
adds functionality to give you dictionary-like behavior.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> options = [{:width, 72}, {:style, "light"}, {:style, "print"}]
[width: 72, style: "light", style: "print"]
iex> List.last options
{:style, "print"}
iex> Keyword.get_values options, :style
["light", "print"]

In a way, this is a form of the duck typing that is talked about in dynamic
object-oriented languages.1 The Keyword module doesn’t have an underlying
primitive data type. It simply assumes that any value it works on is a list that
has been structured a certain way.

This means the APIs for collections in Elixir are fairly broad. Working with a
keyword list, you have access to the APIs in the primitive list type, and the List
and Keyword modules. You also get Enum and Collectable, which we talk about next.

1. http://en.wikipedia.org/wiki/Duck_typing

Chapter 9. An Aside—What Are Types? • 98

report erratum • discuss

http://en.wikipedia.org/wiki/Duck_typing
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 10

In this chapter, you'll see:
• The Enum module
• The Stream module
• The Collectable protocol
• Comprehensions

Processing Collections—Enum and Stream
Elixir comes with a number of types that act as collections. We’ve already
seen lists and maps. Ranges, files, and even functions can also act as collec-
tions. And as we’ll discuss when we look at protocols on page 329, you can
also define your own.

Collections differ in their implementation. But they all share something: you
can iterate through them. Some of them share an additional trait: you can
add things to them.

Technically, things that can be iterated are said to implement the Enumerable
protocol.

Elixir provides two modules that have a bunch of iteration functions. The
Enum module is the workhorse for collections. You’ll use it all the time. I
strongly recommend getting to know it.

The Stream module lets you enumerate a collection lazily. This means that the
next value is calculated only when it is needed. You’ll use this less often, but
when you do it’s a lifesaver.

I don’t want to fill this book with a list of all the APIs. You’ll find the definitive
(and up-to-date) list online.1 Instead, I’ll illustrate some common uses and
let you browse the documentation for yourself. (But please do remember to
do so. Much of Elixir’s power comes from these libraries.)

Enum—Processing Collections
The Enum module is probably the most used of all the Elixir libraries. Employ
it to iterate, filter, combine, split, and otherwise manipulate collections. Here
are some common tasks:

1. http://elixir-lang.org/docs/

report erratum • discuss

http://elixir-lang.org/docs/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• Convert any collection into a list:

iex> list = Enum.to_list 1..5
[1, 2, 3, 4, 5]

• Concatenate collections:

iex> Enum.concat([1,2,3], [4,5,6])
[1, 2, 3, 4, 5, 6]
iex> Enum.concat [1,2,3], 'abc'
[1, 2, 3, 97, 98, 99]

• Create collections whose elements are some function of the original:

iex> Enum.map(list, &(&1 * 10))
[10, 20, 30, 40, 50]
iex> Enum.map(list, &String.duplicate("*", &1))
["*", "**", "***", "****", "*****"]

• Select elements by position or criteria:

iex> Enum.at(10..20, 3)
13
iex> Enum.at(10..20, 20)
nil
iex> Enum.at(10..20, 20, :no_one_here)
:no_one_here
iex> Enum.filter(list, &(&1 > 2))
[3, 4, 5]
iex> require Integer # to get access to is_even
Integer
iex> Enum.filter(list, &Integer.is_even/1)
[2, 4]
iex> Enum.reject(list, &Integer.is_even/1)
[1, 3, 5]

• Sort and compare elements:

iex> Enum.sort ["there", "was", "a", "crooked", "man"]
["a", "crooked", "man", "there", "was"]
iex> Enum.sort ["there", "was", "a", "crooked", "man"],
...> &(String.length(&1) <= String.length(&2))
["a", "was", "man", "there", "crooked"]
iex(4)> Enum.max ["there", "was", "a", "crooked", "man"]
"was"
iex(5)> Enum.max_by ["there", "was", "a", "crooked", "man"], &String.length/1
"crooked"

• Split a collection:

iex> Enum.take(list, 3)
[1, 2, 3]
iex> Enum.take_every list, 2

Chapter 10. Processing Collections—Enum and Stream • 100

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

[1, 3, 5]
iex> Enum.take_while(list, &(&1 < 4))
[1, 2, 3]
iex> Enum.split(list, 3)
{[1, 2, 3], [4, 5]}
iex> Enum.split_while(list, &(&1 < 4))
{[1, 2, 3], [4, 5]}

• Join a collection:

iex> Enum.join(list)
"12345"
iex> Enum.join(list, ", ")
"1, 2, 3, 4, 5"

• Predicate operations:

iex> Enum.all?(list, &(&1 < 4))
false
iex> Enum.any?(list, &(&1 < 4))
true
iex> Enum.member?(list, 4)
true
iex> Enum.empty?(list)
false

• Merge collections:

iex> Enum.zip(list, [:a, :b, :c])
[{1, :a}, {2, :b}, {3, :c}]
iex> Enum.with_index(["once", "upon", "a", "time"])
[{"once", 0}, {"upon", 1}, {"a", 2}, {"time", 3}]

• Fold elements into a single value:

iex> Enum.reduce(1..100, &(&1+&2))
5050
iex> Enum.reduce(["now", "is", "the", "time"],fn word, longest ->
...> if String.length(word) > String.length(longest) do
...> word
...> else
...> longest
...> end
...> end)
"time"
iex> Enum.reduce(["now", "is", "the", "time"], 0, fn word, longest ->
...> if String.length(word) > longest,
...> do: String.length(word),
...> else: longest
...> end)
4

report erratum • discuss

Enum—Processing Collections • 101

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• Deal a hand of cards:

iex> import Enum
iex> deck = for rank <- '23456789TJQKA', suit <- 'CDHS', do: [suit,rank]
['C2', 'D2', 'H2', 'S2', 'C3', 'D3', ...]
iex> deck |> shuffle |> take(13)
['DQ', 'S6', 'HJ', 'H4', 'C7', 'D6', 'SJ', 'S9', 'D7', 'HA', 'S4', 'C2', 'CT']
iex> hands = deck |> shuffle |> chunk(13)
[['D8', 'CQ', 'H2', 'H3', 'HK', 'H9', 'DK', 'S9', 'CT', 'ST', 'SK', 'D2', 'HA'],
['C5', 'S3', 'CK', 'HQ', 'D3', 'D4', 'CA', 'C8', 'S6', 'DQ', 'H5', 'S2', 'C4'],
['C7', 'C6', 'C2', 'D6', 'D7', 'SA', 'SQ', 'H8', 'DT', 'C3', 'H7', 'DA', 'HT'],
['S5', 'S4', 'C9', 'S8', 'D5', 'H4', 'S7', 'SJ', 'HJ', 'D9', 'DJ', 'CJ', 'H6']]

A Note on Sorting
In our example of sort, we used

iex> Enum.sort ["there", "was", "a", "crooked", "man"],
...> &(String.length(&1) <= String.length(&2))

It’s important to use <= and not just < if you want the sort to be stable.

Your Turn
➤ Exercise: ListsAndRecursion-5

Implement the following Enum functions using no library functions or list
comprehensions: all?, each, filter, split, and take. You may need to use an if
statement to implement filter. The syntax for this is

if condition do
expression(s)

else
expression(s)

end

➤ Exercise: ListsAndRecursion-6
(Hard) Write a flatten(list) function that takes a list that may contain any
number of sublists, which themselves may contain sublists, to any depth.
It returns the elements of these lists as a flat list.

iex> MyList.flatten([1, [2, 3, [4]], 5, [[[6]]]])
[1,2,3,4,5,6]

Hint: You may have to use Enum.reverse to get your result in the correct order.

Chapter 10. Processing Collections—Enum and Stream • 102

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-5
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-6
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Streams—Lazy Enumerables
In Elixir, the Enum module is greedy. This means that when you pass it a collec-
tion, it potentially consumes all the contents of that collection. It also means
the result will typically be another collection. Look at the following pipeline:

enum/pipeline.exs
[1, 2, 3, 4, 5]

#=> [1, 2, 3, 4, 5]
|> Enum.map(&(&1*&1))

#=> [1, 4, 9, 16, 25]
|> Enum.with_index

#=> [{1, 0}, {4, 1}, {9, 2}, {16, 3}, {25, 4}]
|> Enum.map(fn {value, index} -> value - index end)

#=> [1, 3, 7, 13, 21]
|> IO.inspect #=> [1, 3, 7, 13, 21]

The first map function takes the original list and creates a new list of its squares.
with_index takes this list and returns a list of tuples. The next map then subtracts
the index from the value, generating a list that gets passed to IO.inspect.

So, this pipeline generates four lists on its way to outputting the final result.

Let’s look at something different. Here’s some code that reads lines from a
file and returns the longest:

enum/longest_line.exs
IO.puts File.read!("/usr/share/dict/words")

|> String.split
|> Enum.max_by(&String.length/1)

In this case, we read the whole dictionary into memory (on my machine that’s
2.4MB), then split it into a list of words (236,000 of them) before processing
it to find the longest (which happens to be formaldehydesulphoxylate).

In both of these examples, our code is suboptimal because each call to Enum
is self-contained. Each call takes a collection and returns a collection.

What we really want is to process the elements in the collection as we need
them. We don’t need to store intermediate results as full collections; we just
need to pass the current element from function to function. And that’s what
streams do.

A Stream Is a Composable Enumerator
Here’s a simple example of creating a Stream:

iex> s = Stream.map [1, 3, 5, 7], &(&1 + 1)
#Stream<[enum: [1, 3, 5, 7], funs: [#Function<46.3851/1 in Stream.map/2>]]>

report erratum • discuss

Streams—Lazy Enumerables • 103

http://media.pragprog.com/titles/elixir16/code/enum/pipeline.exs
http://media.pragprog.com/titles/elixir16/code/enum/longest_line.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

If we’d called Enum.map, we’d have seen the result [2,4,6,8] come back immedi-
ately. Instead we get back a stream value that contains a specification of what
we intended.

How do we get the stream to start giving us results? Treat it as a collection
and pass it to a function in the Enum module:

iex> s = Stream.map [1, 3, 5, 7], &(&1 + 1)
#Stream<[enum: [1, 3, 5, 7], funs: [#Function<46.3851/1 in Stream.map/2>]]>
iex> Enum.to_list s
[2, 4, 6, 8]

Because streams are enumerable, you can also pass a stream to a stream
function. Because of this, we say that streams are composable.

iex> squares = Stream.map [1, 2, 3, 4], &(&1*&1)
#Stream<[enum: [1, 2, 3, 4],

funs: [#Function<32.133702391 in Stream.map/2>]]>

iex> plus_ones = Stream.map squares, &(&1+1)
#Stream<[enum: [1, 2, 3, 4],

funs: [#Function<32.133702391 in Stream.map/2>,
#Function<32.133702391 in Stream.map/2>]]>

iex> odds = Stream.filter plus_ones, fn x -> rem(x,2) == 1 end
#Stream<[enum: [1, 2, 3, 4],

funs: [#Function<26.133702391 in Stream.filter/2>,
#Function<32.133702391 in Stream.map/2>,
#Function<32.133702391 in Stream.map/2>]]>

iex> Enum.to_list odds
[5, 17]

Of course, in real life we’d have written this as

enum/stream1.exs
[1,2,3,4]
|> Stream.map(&(&1*&1))
|> Stream.map(&(&1+1))
|> Stream.filter(fn x -> rem(x,2) == 1 end)
|> Enum.to_list

Note that we’re never creating intermediate lists—we’re just passing successive
elements of each of the collections to the next in the chain. The Stream values
shown in the previous IEx session give a hint of how this works—chained
streams are represented as a list of functions, each of which is applied in
turn to each element of the stream as it is processed.

Streams aren’t only for lists. More and more Elixir modules now support
streams. For example, here’s our longest-word code written using streams:

Chapter 10. Processing Collections—Enum and Stream • 104

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/enum/stream1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

enum/stream2.exs
IO.puts File.open!("/usr/share/dict/words")

|> IO.stream(:line)
|> Enum.max_by(&String.length/1)

The magic here is the call to IO.stream, which converts an IO device (in this
case the open file) into a stream that serves one line at a time. In fact, this is
such a useful concept that there’s a shortcut:

enum/stream3.exs
IO.puts File.stream!("/usr/share/dict/words") |> Enum.max_by(&String.length/1)

The good news is that there is no intermediate storage. The bad news is that
it runs about two times slower than the previous version. However, consider
the case where we were reading data from a remote server or from an external
sensor (maybe temperature readings). Successive lines might arrive slowly,
and they might go on for ever. With the Enum implementation we’d have to
wait for all the lines to arrive before we started processing. With streams we
can process them as they arrive.

Infinite Streams
Because streams are lazy, there’s no need for the whole collection to be
available up front. For example, if I write

iex> Enum.map(1..10_000_000, &(&1+1)) |> Enum.take(5)
[2, 3, 4, 5, 6]

it takes about 8 seconds before I see the result. Elixir is creating a 10-million-
element list, then taking the first five elements from it. If instead I write

iex> Stream.map(1..10_000_000, &(&1+1)) |> Enum.take(5)
[2, 3, 4, 5, 6]

the result comes back instantaneously. The take call just needs five values,
which it gets from the stream. Once it has them, there’s no more processing.

In these examples the stream is bounded, but it can equally well go on forever.
To do that, we’ll need to create streams based on functions.

Creating Your Own Streams
Streams are implemented solely in Elixir libraries—there is no specific runtime
support. However, this doesn’t mean you want to drop down to the very lowest
level and create your own streamable types. The actual implementation is
complex (in the same way that string theory and dating rituals are complex).
Instead, you probably want to use some helpful wrapper functions to do the
heavy lifting. There are a number of these, including cycle, repeatedly, iterate,

report erratum • discuss

Streams—Lazy Enumerables • 105

http://media.pragprog.com/titles/elixir16/code/enum/stream2.exs
http://media.pragprog.com/titles/elixir16/code/enum/stream3.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

unfold, and resource. (If you needed proof that the internal implementation is
tricky, consider the fact that these last two names give you almost no hint of
their power.)

Let’s start with the three simplest: cycle, repeatedly, and iterate.

Stream.cycle

Stream.cycle takes an enumerable and returns an infinite stream containing
that enumerable’s elements. When it gets to the end, it repeats from the
beginning, indefinitely. Here’s an example that generates the rows in an HTML
table with alternating green and white classes:

iex> Stream.cycle(~w{ green white }) |>
...> Stream.zip(1..5) |>
...> Enum.map(fn {class, value} ->
...> "<tr class='#{class}'><td>#{value}</td></tr>\n" end) |>
...> IO.puts
<tr class="green"><td>1</td></tr>
<tr class="white"><td>2</td></tr>
<tr class="green"><td>3</td></tr>
<tr class="white"><td>4</td></tr>
<tr class="green"><td>5</td></tr>
:ok

Stream.repeatedly

Stream.repeatedly takes a function and invokes it each time a new value is
wanted.

iex> Stream.repeatedly(fn -> true end) |> Enum.take(3)
[true, true, true]
iex> Stream.repeatedly(&:random.uniform/0) |> Enum.take(3)
[0.7230402056221108, 0.94581636451987, 0.5014907142064751]

Stream.iterate

Stream.iterate(start_value, next_fun) generates an infinite stream. The first value is
start_value. The next value is generated by applying next_fun to this value. This
continues for as long as the stream is being used, with each value being the
result of applying next_fun to the previous value.

Here are some examples:

iex> Stream.iterate(0, &(&1+1)) |> Enum.take(5)
[0, 1, 2, 3, 4]
iex> Stream.iterate(2, &(&1*&1)) |> Enum.take(5)
[2, 4, 16, 256, 65536]
iex> Stream.iterate([], &[&1]) |> Enum.take(5)
[[], [[]], [[[]]], [[[[]]]], [[[[[]]]]]]

Chapter 10. Processing Collections—Enum and Stream • 106

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Stream.unfold

Now we can get a little more adventurous. Stream.unfold is related to iterate, but
you can be more explicit both about the values output to the stream and
about the values passed to the next iteration. You supply an initial value and
a function. The function uses the argument to create two values, returned as
a tuple. The first is the value to be returned by this iteration of the stream,
and the second is the value to be passed to the function on the next iteration
of the stream. If the function returns nil, the stream terminates.

This sounds abstract, but unfold is quite useful—it is a general way of creating
a potentially infinite stream of values where each value is some function of
the previous state.

The key is the generating function. Its general form is

fn state -> { stream_value, new_state } end

For example, here’s a stream of Fibonacci numbers:

iex> Stream.unfold({0,1}, fn {f1,f2} -> {f1, {f2, f1+f2}} end) |> Enum.take(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Here the state is a tuple containing the current and the next number in the
sequence. We seed it with the initial state of {0, 1}. The value each iteration
of the stream returns is the first of the state values. The new state moves one
down the sequence, so an initial state of {f1,f2} becomes a new state of {f2,f1+f2}.

Stream.resource

At this point you might be wondering how streams can interact with external
resources. We’ve already seen how you can turn a file’s contents into a stream
of lines, but how could you implement this yourself? You’d need to open the
file when the stream first starts, return successive lines, and then close the
file at the end. Or maybe you want to turn a database result-set cursor into
a stream of values. You’d have to execute the query when the stream starts,
return each row as stream values, and close the query at the end. And that’s
where Stream.resource comes in.

Stream.resource builds upon Stream.unfold. It makes two changes.

The first argument to unfold is the initial value to be passed to the iteration
function. But if that value is a resource, we don’t want to open it until the
stream starts delivering values, and that might not happen until long after
we create the stream. To get around this, resource takes not a value, but a
function that returns the value. That’s the first change.

report erratum • discuss

Streams—Lazy Enumerables • 107

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Second, when the stream is done with the resource, we may need to close it.
That’s what the third argument to Stream.resource does—it takes the final
accumulator value and does whatever is needed to deallocate the resource.

Here’s an example from the library documentation:

Stream.resource(fn -> File.open!("sample") end,
fn file ->

case IO.read(file, :line) do
data when is_binary(data) -> {[data], file}
_ -> {:halt, file}

end
end,
fn file -> File.close(file) end)

The first function opens the file when the stream becomes active, and passes
it to the second function. This reads the file, line by line, returning either a
line and the file as a tuple, or a :halt tuple at the end of the file. The third
function closes the file.

Let’s finish with a different kind of resource: time. We’ll implement a timer
that counts down the number of seconds until the start of the next minute.
It uses a stream resource to do this. The allocation function returns the
number of seconds left until the next minute starts. It does this each time
the stream is evaluated, so we’ll get a countdown that varies depending on
when it is called.

The iteration function looks at the time left. If zero, it returns {:halt, 0}; other-
wise it sleeps for a second and returns the current countdown as a string,
along with the decremented counter.

In this case there’s no resource deallocation, so the third function does
nothing.

Here’s the code:

enum/countdown.exs
defmodule Countdown do

def sleep(seconds) do
receive do

after seconds*1000 -> nil
end

end

def say(text) do
spawn fn -> :os.cmd('say #{text}') end

end

Chapter 10. Processing Collections—Enum and Stream • 108

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/enum/countdown.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def timer do
Stream.resource(

fn -> # the number of seconds to the start of the next minute
{_h,_m,s} = :erlang.time
60 - s - 1

end,

fn # wait for the next second, then return its countdown
0 ->

{:halt, 0}

count ->
sleep(1)
{ [inspect(count)], count - 1 }

end,

fn _ -> nil end # nothing to deallocate
)

end
end

(The eagle-eyed among you will have noticed a function called say in the
Countdown module. This executes the shell command say, which, on OS X, speaks
its argument. You could substitute espeak on Linux and ptts on Windows.)

Let’s play with the code.

$ iex countdown.exs
iex> counter = Countdown.timer
#Function<17.133702391/2 in Stream.resource/3>

iex> printer = counter |> Stream.each(&IO.puts/1)
#Stream[enum: #Function<17.133702391/2 in Stream.resource/3>,
funs: [#Function<0.133702391/1 in Stream.each/2>]]>

iex> speaker = printer |> Stream.each(&Countdown.say/1)
#Stream[enum: #Function<17.133702391/2 in Stream.resource/3>,
funs: [#Function<0.13370239/1 in Stream.each/2>,
#Function<0.133702391/1 in Stream.each/2>]]>

So far, we’ve built a stream that creates time events, prints the countdown
value, and speaks it. But there’s been no output, as we haven’t yet asked the
stream for any values. Let’s do that now:

iex> speaker |> Enum.take(5)
37 ** numbers are output once
36 ** per second. Even cooler, the
35 ** computer says
34 ** "thirty seven", "thirty six"…
33
["37", "36", "35", "34", "33"]

report erratum • discuss

Streams—Lazy Enumerables • 109

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Cool—we must have started it around 22 seconds into a minute, so the
countdown starts at 37. Let’s use the same stream again, a few seconds later:

iex> speaker |> Enum.take(3)
29
28
27
["29", "28", "27"]

Wait some more seconds, and this time let it run to the top of the minute:

iex> speaker |> Enum.to_list
6
5
4
3
2
1
["6", "5", "4", "3","2", "1"]

This is clearly not great code, as it fails to correct the sleep time for any delays
introduced by our code. But it illustrates a very cool point. Lazy streams let
you deal with resources that are asynchronous to your code, and the fact
that they are initialized every time they are used means they’re effectively
side effect–free. Every time we pipe our stream to an Enum function, we get a
fresh set of values, computed at that time.

Streams in Practice
In the same way that functional programming requires you to look at problems
in a new way, streams ask you to look at iteration and collections afresh. Not
every situation where you’re iterating requires a stream. But consider using
a stream when you want to defer processing until you need the data, and
when you need to deal with large numbers of things without necessarily
generating them all at once.

The Collectable Protocol
The Enumerable protocol lets you iterate over the elements in a type—given a
collection, you can get the elements. Collectable is in some sense the opposite—it
allows you to build a collection by inserting elements into it.

Not all collections are collectable. Ranges, for example, cannot have new
entries added to them.

Chapter 10. Processing Collections—Enum and Stream • 110

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The collectable API is pretty low-level, so you’ll typically access it via Enum.into
and when using comprehensions (which we cover in the next section). For
example, we can inject the elements of a range into an empty list using

iex> Enum.into 1..5, []
[1, 2, 3, 4, 5]

If the list is not empty, the new elements are tacked onto the end:

iex> Enum.into 1..5, [100, 101]
[100, 101, 1, 2, 3, 4, 5]

Output streams are collectable, so the following code lazily copies standard
input to standard output:

iex> Enum.into IO.stream(:stdio, :line), IO.stream(:stdio, :line)

Comprehensions
When you’re writing functional code, you often map and filter collections of
things. To make your life easier (and your code easier to read), Elixir provides
a general-purpose shortcut for this: the comprehension.

The idea of a comprehension is fairly simple: given one or more collections,
extract all combinations of values from each, optionally filter the values, and
then generate a new collection using the values that remain.

The general syntax for comprehensions is deceptively simple:

result = for generator or filter… [, into: value], do: expression

Let’s see a couple of basic examples before we get into the details.

iex> for x <- [1, 2, 3, 4, 5], do: x * x
[1, 4, 9, 16, 25]
iex> for x <- [1, 2, 3, 4, 5], x < 4, do: x * x
[1, 4, 9]

A generator specifies how you want to extract values from a collection.

pattern <- enumerable_thing

Any variables matched in the pattern are available in the rest of the compre-
hension (including the block). For example, x <- [1,2,3] says that we want to
first run the rest of the comprehension with x set to 1. Then we run it with x
set to 2, and so on. If we have two generators, their operations are nested, so

x <- [1,2], y <- [5,6]

will run the rest of the comprehension with x=1, y=5; x=1, y=6; x=2, y=5; and
x=2, y=6. We can use those values of x and y in the do block:

report erratum • discuss

Comprehensions • 111

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> for x <- [1,2], y <- [5,6], do: x * y
[5, 6, 10, 12]
iex> for x <- [1,2], y <- [5,6], do: {x, y}
[{1, 5}, {1, 6}, {2, 5}, {2, 6}]

You can use variables from generators in later generators:

iex> min_maxes = [{1,4}, {2,3}, {10, 15}]
[{1, 4}, {2, 3}, {10, 15}]
iex> for {min,max} <- min_maxes, n <- min..max, do: n
[1, 2, 3, 4, 2, 3, 10, 11, 12, 13, 14, 15]

A filter is a predicate. It acts as a gatekeeper for the rest of the comprehen-
sion—if the condition is false, then the comprehension moves on to the next
iteration without generating an output value.

For example, the code that follows uses a comprehension to list pairs of
numbers from 1 to 8 whose product is a multiple of 10. It uses two generators
(to cycle through the pairs of numbers) and two filters. The first filter allows
only pairs in which the first number is at least the value of the second. The
second filter checks to see if the product is a multiple of 10.

iex> first8 = [1,2,3,4,5,6,7,8]
[1, 2, 3, 4, 5, 6, 7, 8]
iex> for x <- first8, y <- first8, x >= y, rem(x*y, 10)==0, do: { x, y }
[{5, 2}, {5, 4}, {6, 5}, {8, 5}]

This comprehension iterates 64 times, with x=1, y=1; x=1, y=2; and so on.
However, the first filter cuts the iteration short when x is less than y. This
means the second filter runs only 36 times.

Because the first term in a generator is a pattern, we can use it to deconstruct
structured data. Here’s a comprehension that swaps the keys and values in
a keyword list.

iex> reports = [dallas: :hot, minneapolis: :cold, dc: :muggy, la: :smoggy]
[dallas: :hot, minneapolis: :cold, dc: :muggy, la: :smoggy]
iex> for { city, weather } <- reports, do: { weather, city }
[hot: :dallas, cold: :minneapolis, muggy: :dc, smoggy: :la]

Comprehensions Work on Bits, Too
A bitstring (and, by extension, a binary or a string) is simply a collection of
ones and zeroes. So it’s probably no surprise that comprehensions work on
bits, too. What might be surprising is the syntax:

iex> for << ch <- "hello" >>, do: ch
'hello'
iex> for << ch <- "hello" >>, do: <<ch>>
["h", "e", "l", "l", "o"]

Chapter 10. Processing Collections—Enum and Stream • 112

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Here the generator is enclosed in << and >>, indicating a binary. In the first
case, the do block returns the integer code for each character, so the resulting
list is [104, 101, 108, 108, 111], which IEx displays as 'hello'.

In the second case, we convert the code back into a string, and the result is
a list of those one-character strings.

Again, the thing to the left of the <- is a pattern, and so we can use binary
pattern matching. Let’s convert a string into the octal representation of its
characters:

iex> for << << b1::size(2), b2::size(3), b3::size(3) >> <- "hello" >>,
...> do: "0#{b1}#{b2}#{b3}"
["0150", "0145", "0154", "0154", "0157"]

Scoping and Comprehensions
All variable assignments inside a comprehension are local to that comprehen-
sion—you will not affect the value of a variable in the outer scope.

iex> name = "Dave"
Dave
iex> for name <- ["cat", "dog"], do: String.upcase(name)
["CAT", "DOG"]
iex> name
Dave
iex>

The Value Returned by a Comprehension
In our examples thus far, the comprehension has returned a list. The list
contains the values returned by the do expression for each iteration of the
comprehension.

This behavior can be changed with the into: parameter. This takes a collection
that is to receive the results of the comprehension. For example, we can
populate a map using

iex> for x <- ~w{ cat dog }, into: %{}, do: { x, String.upcase(x) }
%{"cat" => "CAT", "dog" => "DOG"}

It might be more clear to use Map.new in this case:

iex> for x <- ~w{ cat dog }, into: Map.new, do: { x, String.upcase(x) }
%{"cat" => "CAT", "dog" => "DOG"}

The collection doesn’t have to be empty:

iex> for x <- ~w{ cat dog }, into: %{"ant" => "ANT"}, do: { x, String.upcase(x) }
%{"ant" => "ANT", "cat" => "CAT", "dog" => "DOG"}

report erratum • discuss

Comprehensions • 113

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In Chapter 24, Protocols—Polymorphic Functions, on page 329, we’ll look at
protocols, which let us specify common behaviors across different types. The
into: option takes values that implement the Collectable protocol. These include
lists, binaries, functions, maps, files, hash dicts, hash sets, and IO streams,
so we can write things such as

iex> for x <- ~w{ cat dog }, into: IO.stream(:stdio,:line), do: "<<#{x}>>\n"
<<cat>>
<<dog>>
%IO.Stream{device: :standard_io, line_or_bytes: :line, raw: false}

Your Turn
➤ Exercise: ListsAndRecursion-7

In the last exercise of Chapter 7, Lists and Recursion, on page 71, you
wrote a span function. Use it and list comprehensions to return a list of
the prime numbers from 2 to n.

➤ Exercise: ListsAndRecursion-8
The Pragmatic Bookshelf has offices in Texas (TX) and North Carolina
(NC), so we have to charge sales tax on orders shipped to these states.
The rates can be expressed as a keyword list (I wish it were that simple.…):

tax_rates = [NC: 0.075, TX: 0.08]

Here’s a list of orders:

orders = [
[id: 123, ship_to: :NC, net_amount: 100.00],
[id: 124, ship_to: :OK, net_amount: 35.50],
[id: 125, ship_to: :TX, net_amount: 24.00],
[id: 126, ship_to: :TX, net_amount: 44.80],
[id: 127, ship_to: :NC, net_amount: 25.00],
[id: 128, ship_to: :MA, net_amount: 10.00],
[id: 129, ship_to: :CA, net_amount: 102.00],
[id: 130, ship_to: :NC, net_amount: 50.00]]

Write a function that takes both lists and returns a copy of the orders,
but with an extra field, total_amount, which is the net plus sales tax. If a
shipment is not to NC or TX, there’s no tax applied.

Moving Past Divinity
L. Peter Deutsch once penned, “To iterate is human, to recurse divine.” And
that’s certainly the way I felt when I first started coding Elixir. The joy of
pattern-matching lists in sets of recursive functions drove my designs. After
a while, I realized that perhaps I was taking this too far.

Chapter 10. Processing Collections—Enum and Stream • 114

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-7
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-8
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In reality, most of our day-to-day work is better handled using the various
enumerators built into Elixir. They make your code smaller, easier to under-
stand, and probably more efficient.

Part of the process of learning to be effective in Elixir is working out for
yourself when to use recursion and when to use enumerators. I recommend
enumerating when you can.

Next we’ll look at string handling in Elixir (and Erlang).

report erratum • discuss

Moving Past Divinity • 115

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 11

In this chapter, you'll see:
• Strings and string literals
• Character lists (single-quoted literals)
• Pattern matching and processing strings

Strings and Binaries
We’ve been using strings without really discussing them. Let’s rectify that.

String Literals
Elixir has two kinds of string: single-quoted and double-quoted. They differ
significantly in their internal representation. But they also have many things
in common.

• Strings can hold characters in UTF-8 encoding.

• They may contain escape sequences:

DEL (0x7f)\dBS (0x08)\bBEL (0x07)\a
NL (0x0a)\nFF (0x0c)\fESC (0x1b)\e
TAB (0x09)\tSP (0x20)\sCR (0x0d)\r
2 hex digits\xhh1–6 hex digits\uhhhVT (0x0b)\v

• They allow interpolation on Elixir expressions using the syntax #{...}:

iex> name = "dave"
"dave"
iex> "Hello, #{String.capitalize name}!"
"Hello, Dave!"

• Characters that would otherwise have special meaning can be escaped
with a backslash.

• They support heredocs.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Heredocs
Any string can span several lines. To illustrate this, we’ll use both IO.puts and
IO.write. We use write for the multiline string because puts always appends a
newline, and we want to see the contents without this.

IO.puts "start"
IO.write "

my
string

"
IO.puts "end"

produces

start

my
string

end

Notice how the multiline string retains the leading and trailing newlines and
the leading spaces on the intermediate lines.

The heredoc notation fixes this. Triple the string delimiter (''' or """) and indent
the trailing delimiter to the same margin as your string contents, and you
get this:

IO.puts "start"
IO.write """

my
string
"""

IO.puts "end"

which produces

start
my
string
end

Heredocs are used extensively to add documentation to functions and modules.

Sigils
Like Ruby, Elixir has an alternative syntax for some literals. We’ve already
seen it with regular expressions, where we wrote ~r{...}. In Elixir, these ~-style
literals are called sigils (symbols with magical powers).

Chapter 11. Strings and Binaries • 118

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

A sigil starts with a tilde, followed by an upper- or lowercase letter, some
delimited content, and perhaps some options. The delimiters can be <…>,
{…}, […], (…), |…|, /…/, "…", and '…'.

The letter determines the sigil’s type:

A character list with no escaping or interpolation~C
A character list, escaped and interpolated just like a single-quoted string~c
A Date in the format yyyy-mm-dd~D
A naive (raw) DateTime in the format yyyy-mm-dd hh:mm:ss[.ddd]~N
A regular expression with no escaping or interpolation~R
A regular expression, escaped and interpolated~r
A string with no escaping or interpolation~S
A string, escaped and interpolated just like a double-quoted string~s
A Time in the format hh:mm:ss[.dddd]~T
A list of whitespace-delimited words, with no escaping or interpolation~W
A list of whitespace-delimited words, with escaping and interpolation~w

Here are some examples of sigils, using a variety of delimiters:

iex> ~C[1\n2#{1+2}]
'1\\n2\#{1+2}'
iex> ~c"1\n2#{1+2}"
'1\n23'
iex> ~S[1\n2#{1+2}]
"1\\n2\#{1+2}"
iex> ~s/1\n2#{1+2}/
"1\n23"
iex> ~W[the c#{'a'}t sat on the mat]
["the", "c\#{'a'}t", "sat", "on", "the", "mat"]
iex> ~w[the c#{'a'}t sat on the mat]
["the", "cat", "sat", "on", "the", "mat"]
iex> ~D<1999-12-31>
~D[1999-12-31]
iex> ~T[12:34:56]
~T[12:34:56]
iex> ~N{1999-12-31 23:59:59}
~N[1999-12-31 23:59:59]

The ~W and ~w sigils take an optional type specifier, a, c, or s, which determines
whether it returns a list of atoms, character lists, or strings. (We’ve already
seen the ~r options.)

report erratum • discuss

String Literals • 119

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> ~w[the c#{'a'}t sat on the mat]a
[:the, :cat, :sat, :on, :the, :mat]
iex> ~w[the c#{'a'}t sat on the mat]c
['the', 'cat', 'sat', 'on', 'the', 'mat']
iex> ~w[the c#{'a'}t sat on the mat]s
["the", "cat", "sat", "on", "the", "mat"]

The delimiter can be any nonword character. If it is (, [, {, or <, then the ter-
minating delimiter is the corresponding closing character. Otherwise the ter-
minating delimiter is the next nonescaped occurrence of the opening delimiter.

Elixir does not check the nesting of delimiters, so the sigil ~s{a{b} is the three-
character string a{b.

If the opening delimiter is three single or three double quotes, the sigil is
treated as a heredoc.

iex> ~w"""
...> the
...> cat
...> sat
...> """
["the", "cat", "sat"]

If you want to specify modifiers with heredoc sigils (most commonly you’d do
this with ~r), add them after the trailing delimiter.

iex> ~r"""
...> hello
...> """i
~r/hello\n/i

One of the interesting things about sigils is that you can define your own. We
talk about this in Part III, on page 347.

The Name “strings”
Before we get further into this, I need to explain something. In most other
languages, you’d call both 'cat' and "cat" strings. And that’s what I’ve been
doing so far. But Elixir has a different convention.

In Elixir, the convention is that we call only double-quoted strings “strings.”
The single-quoted form is a character list.

This is important. The single- and double-quoted forms are very different,
and libraries that work on strings work only on the double-quoted form.

Let’s explore the differences in more detail.

Chapter 11. Strings and Binaries • 120

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Single-Quoted Strings—Lists of Character Codes
Single-quoted strings are represented as a list of integer values, each value
corresponding to a codepoint in the string. For this reason, we refer to them
as character lists (or char lists).

iex> str = 'wombat'
'wombat'
iex> is_list str
true
iex> length str
6
iex> Enum.reverse str
'tabmow'

This is confusing: IEx says it is a list, but it shows the value as a string.
That’s because IEx prints a list of integers as a string if it believes each
number in the list is a printable character. You can try this for yourself:

iex> [67, 65, 84]
'CAT'

You can look at the internal representation in a number of ways:

iex> str = 'wombat'
'wombat'
iex> :io.format "~w~n", [str]
[119,111,109,98,97,116]
:ok
iex> List.to_tuple str
{119, 111, 109, 98, 97, 116}
iex> str ++ [0]
[119, 111, 109, 98, 97, 116, 0]

The ~w in the format string forces str to be written as an Erlang term—the
underlying list of integers. The ~n is a newline.

The last example creates a new character list with a null byte at the end. IEx
no longer thinks all the bytes are printable, and so returns the underlying
character codes.

If a character list contains characters Erlang considers nonprintable, you’ll
see the list representation.

iex> '∂x/∂y'
[8706, 120, 47, 8706, 121]

Because a character list is a list, we can use the usual pattern matching and
List functions.

report erratum • discuss

Single-Quoted Strings—Lists of Character Codes • 121

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> 'pole' ++ 'vault'
'polevault'
iex> 'pole' -- 'vault'
'poe'
iex> List.zip ['abc', '123']
[{97, 49}, {98, 50}, {99, 51}]
iex> [head | tail] = 'cat'
'cat'
iex> head
99
iex> tail
'at'
iex> [head | tail]
'cat'

Why is the head of 'cat' 99 and not c?. Remember that a char list is just a list
of integer character codes, so each individual entry is a number. It happens
that 99 is the code for a lowercase c.

In fact, the notation ?c returns the integer code for the character c. This is
often useful when employing patterns to extract information from character
lists. Here’s a simple module that parses the character-list representation of
an optionally signed decimal number.

strings/parse.exs
defmodule Parse do

def number([?- | tail]), do: _number_digits(tail, 0) * -1
def number([?+ | tail]), do: _number_digits(tail, 0)
def number(str), do: _number_digits(str, 0)

defp _number_digits([], value), do: value
defp _number_digits([digit | tail], value)
when digit in '0123456789' do

_number_digits(tail, value*10 + digit - ?0)
end
defp _number_digits([non_digit | _], _) do

raise "Invalid digit '#{[non_digit]}'"
end

end

Let’s try it in IEx.

iex> c("parse.exs")
[Parse]
iex> Parse.number('123')
123
iex> Parse.number('-123')
-123
iex> Parse.number('+123')
123

Chapter 11. Strings and Binaries • 122

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/strings/parse.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> Parse.number('+9')
9
iex> Parse.number('+a')
** (RuntimeError) Invalid digit 'a'

Your Turn
➤ Exercise: StringsAndBinaries-1

Write a function that returns true if a single-quoted string contains only
printable ASCII characters (space through tilde).

➤ Exercise: StringsAndBinaries-2
Write an anagram?(word1, word2) that returns true if its parameters are
anagrams.

➤ Exercise: StringsAndBinaries-3
Try the following in IEx:

iex> ['cat' | 'dog']
['cat',100,111,103]

Why does IEx print 'cat' as a string, but 'dog' as individual numbers?

➤ Exercise: StringsAndBinaries-4
(Hard) Write a function that takes a single-quoted string of the form
number [+-*/] number and returns the result of the calculation. The indi-
vidual numbers do not have leading plus or minus signs.

calculate('123 + 27') # => 150

Binaries
The binary type represents a sequence of bits.

A binary literal looks like << term,… >>.

The simplest term is just a number from 0 to 255. The numbers are stored
as successive bytes in the binary.

iex> b = << 1, 2, 3 >>
<<1, 2, 3>>
iex> byte_size b
3
iex> bit_size b
24

You can specify modifiers to set any term’s size (in bits). This is useful when
working with binary formats such as media files and network packets.

report erratum • discuss

Binaries • 123

http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-4
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> b = << 1::size(2), 1::size(3) >> # 01 001
<<9::size(5)>> # = 9 (base 10)
iex> byte_size b
1
iex> bit_size b
5

You can store integers, floats, and other binaries in binaries.

iex> int = << 1 >>
<<1>>
iex> float = << 2.5 :: float >>
<<64, 4, 0, 0, 0, 0, 0, 0>>
iex> mix = << int :: binary, float :: binary >>
<<1, 64, 4, 0, 0, 0, 0, 0, 0>>

Let’s finish an initial look at binaries with an example of bit extraction. An
IEEE 754 float has a sign bit, 11 bits of exponent, and 52 bits of mantissa.
The exponent is biased by 1023, and the mantissa is a fraction with the top
bit assumed to be 1. So we can extract the fields and then use :math.pow, which
performs exponentiation, to reassemble the number:

iex> << sign::size(1), exp::size(11), mantissa::size(52) >> = << 3.14159::float >>
iex> (1 + mantissa / :math.pow(2, 52)) * :math.pow(2, exp-1023) * (1 - 2*sign)
3.14159

Double-Quoted Strings Are Binaries
Whereas single-quoted strings are stored as char lists, the contents of a
double-quoted string (dqs) are stored as a consecutive sequence of bytes in
UTF-8 encoding. Clearly this is more efficient in terms of memory and certain
forms of access, but it does have two implications.

First, because UTF-8 characters can take more than a single byte to represent,
the size of the binary is not necessarily the length of the string.

iex> dqs = "∂x/∂y"
"∂x/∂y"
iex> String.length dqs
5
iex> byte_size dqs
9
iex> String.at(dqs, 0)
"∂"
iex> String.codepoints(dqs)
["∂", "x", "/", "∂", "y"]
iex> String.split(dqs, "/")
["∂x", "∂y"]

Chapter 11. Strings and Binaries • 124

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Second, because you’re no longer using lists, you need to learn and work with
the binary syntax alongside the list syntax in your code.

Strings and Elixir Libraries
When Elixir library documentation uses the word string (and most of the time
it uses the word binary), it means double-quoted strings.

The String module defines functions that work with double-quoted strings.

at(str, offset)
Returns the grapheme at the given offset (starting at 0). Negative offsets
count from the end of the string.

iex> String.at("∂og", 0)
"∂"
iex> String.at("∂og", -1)
"g"

capitalize(str)
Converts str to lowercase, and then capitalizes the first character.

iex> String.capitalize "école"
"École"
iex> String.capitalize "ÎÎÎÎÎ"
"Îîîîî"

codepoints(str)
Returns the codepoints in str.

iex> String.codepoints("José's ∂øg")
["J", "o", "s", "é", "'", "s", " ", "∂", "ø", "g"]

downcase(str)
Converts str to lowercase.

iex> String.downcase "ØRSteD"
"ørsted"

duplicate(str, n)
Returns a string containing n copies of str.

iex> String.duplicate "Ho! ", 3
"Ho! Ho! Ho! "

ends_with?(str, suffix | [suffixes])
Returns true if str ends with any of the given suffixes.

iex> String.ends_with? "string", ["elix", "stri", "ring"]
true

report erratum • discuss

Double-Quoted Strings Are Binaries • 125

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

first(str)
Returns the first grapheme from str.

iex> String.first "∂og"
"∂"

graphemes(str)
Returns the graphemes in the string. This is different from the codepoints
function, which lists combining characters separately. The following
example uses a combining diaeresis along with the letter e to represent
ë. (It might not display properly on your ereader.)

iex> String.codepoints "noe\u0308l"
["n", "o", "e", "̈", "l"]
iex> String.graphemes "noe\u0308l"
["n", "o", "ë", "l"]

jaro_distance
Returns a float between 0 and 1 indicating the likely similarity of two
strings.

iex> String.jaro_distance("jonathan", "jonathon")
0.9166666666666666
iex> String.jaro_distance("josé", "john")
0.6666666666666666

last(str)
Returns the last grapheme from str.

iex> String.last "∂og"
"g"

length(str)
Returns the number of graphemes in str.

iex> String.length "∂x/∂y"
5

myers_difference
Returns the list of transformations needed to convert one string to
another.

iex> String.myers_difference("banana", "panama")
[del: "b", ins: "p", eq: "ana", del: "n", ins: "m", eq: "a"]

Chapter 11. Strings and Binaries • 126

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

next_codepoint(str)
Splits str into its leading codepoint and the rest, or nil if str is empty. This
may be used as the basis of an iterator.

defmodule MyString do
def each(str, func), do: _each(String.next_codepoint(str), func)

defp _each({codepoint, rest}, func) do
func.(codepoint)
_each(String.next_codepoint(rest), func)

end

defp _each(nil, _), do: []
end

MyString.each "∂og", fn c -> IO.puts c end

produces

∂
o
g

next_grapheme(str)
Same as next_codepoint, but returns graphemes (:no_grapheme on completion).

pad_leading(str, new_length, padding \\ " ")
Returns a new string, at least new_length characters long, containing str
right-justified and padded with padding.

iex> String.pad_leading("cat", 5, ">")
">>cat"

pad_trailing(str, new_length, padding \\ " ")
Returns a new string, at least new_length characters long, containing str
left-justified and padded with padding.

iex> String.pad_trailing("cat", 5)
"cat "

printable?(str)
Returns true if str contains only printable characters.

iex> String.printable? "José"
true
iex> String.printable? "\x00 a null"
false

report erratum • discuss

Double-Quoted Strings Are Binaries • 127

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

replace(str, pattern, replacement, options \\ [global: true, insert_replaced: nil])
Replaces pattern with replacement in str under control of options.

If the :global option is true, all occurrences of the pattern are replaced;
otherwise only the first is replaced.

If :insert_replaced is a number, the pattern is inserted into the replacement
at that offset. If the option is a list, it is inserted multiple times.

iex> String.replace "the cat on the mat", "at", "AT"
"the cAT on the mAT"
iex> String.replace "the cat on the mat", "at", "AT", global: false
"the cAT on the mat"
iex> String.replace "the cat on the mat", "at", "AT", insert_replaced: 0
"the catAT on the matAT"
iex> String.replace "the cat on the mat", "at", "AT", insert_replaced: [0,2]
"the catATat on the matATat"

reverse(str)
Reverses the graphemes in a string.

iex> String.reverse "pupils"
"slipup"
iex> String.reverse "∑ƒ÷∂"
"∂÷ƒ∑"

slice(str, offset, len)
Returns a len character substring starting at offset (measured from the end
of str if negative).

iex> String.slice "the cat on the mat", 4, 3
"cat"
iex> String.slice "the cat on the mat", -3, 3
"mat"

split(str, pattern \\ nil, options \\ [global: true])
Splits str into substrings delimited by pattern. If :global is false, only one split
is performed. pattern can be a string, a regular expression, or nil. In the
latter case, the string is split on whitespace.

iex> String.split " the cat on the mat "
["the", "cat", "on", "the", "mat"]
iex> String.split "the cat on the mat", "t"
["", "he ca", " on ", "he ma", ""]
iex> String.split "the cat on the mat", ~r{[ae]}
["th", " c", "t on th", " m", "t"]
iex> String.split "the cat on the mat", ~r{[ae]}, parts: 2
["th", " cat on the mat"]

Chapter 11. Strings and Binaries • 128

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

starts_with?(str, prefix | [prefixes])
Returns true if str starts with any of the given prefixes.

iex> String.starts_with? "string", ["elix", "stri", "ring"]
true

trim(str)
Trims leading and trailing whitespace from str.

iex> String.trim "\t Hello \r\n"
"Hello"

trim(str, character)
Trims leading and trailing instances of character from str.

iex> String.trim "!!!SALE!!!", "!"
"SALE"

trim_leading(str)
Trims leading whitespace from str.

iex> String.trim_leading "\t\f Hello\t\n"
"Hello\t\n"

trim_leading(str, character)
Trims leading copies of character (an integer codepoint) from str.

iex> String.trim_leading "!!!SALE!!!", "!"
"SALE!!!"

trim_trailing(str)
Trims trailing whitespace from str.

iex> String.trim_trailing(" line \r\n")
" line"

trim_trailing(str, character)
Trims trailing occurrences of character from str.

iex> String.trim_trailing "!!!SALE!!!", "!"
"!!!SALE"

upcase(str)

iex> String.upcase "José Ørstüd"
"JOSÉ ØRSTÜD"

report erratum • discuss

Double-Quoted Strings Are Binaries • 129

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

valid?(str)
Returns true if str is a string containing valid codepoints.

iex> String.valid? "∂"
true
iex> String.valid? "∂og"
true
iex> String.valid? << 0x80, 0x81 >>
false

Your Turn
➤ Exercise: StringsAndBinaries-5

Write a function that takes a list of double-quoted strings and prints each
on a separate line, centered in a column that has the width of the longest
string. Make sure it works with UTF characters.

iex> center(["cat", "zebra", "elephant"])
cat

zebra
elephant

Binaries and Pattern Matching
The first rule of binaries is “if in doubt, specify the type of each field.” Available
types are binary, bits, bitstring, bytes, float, integer, utf8, utf16, and utf32. You can also
add qualifiers:

• size(n): The size of the field, in bits.
• signed or unsigned: For integer fields, should it be interpreted as signed?
• endianness: big, little, or native.

Use hyphens to separate multiple attributes for a field:

<< length::unsigned-integer-size(12), flags::bitstring-size(4) >> = data

However, unless you’re doing a lot of work with binary file or protocol formats,
the most common use of all this scary stuff is to process UTF-8 strings.

String Processing with Binaries
When we process lists, we use patterns that split the head from the rest of
the list. With binaries that hold strings, we can do the same kind of trick. We
have to specify the type of the head (UTF-8), and make sure the tail remains
a binary.

Chapter 11. Strings and Binaries • 130

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-5
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

strings/utf-iterate.ex
defmodule Utf8 do

def each(str, func) when is_binary(str), do: _each(str, func)

defp _each(<< head :: utf8, tail :: binary >>, func) do
func.(head)
_each(tail, func)

end

defp _each(<<>>, _func), do: []
end

Utf8.each "∂og", fn char -> IO.puts char end

produces

8706
111
103

The parallels with list processing are clear, but the differences are significant.
Rather than use [head | tail], we use << head::utf8, tail::binary >>. And rather than
terminate when we reach the empty list, [], we look for an empty binary, <<>>.

Your Turn
➤ Exercise: StringsAndBinaries-6

Write a function to capitalize the sentences in a string. Each sentence is
terminated by a period and a space. Right now, the case of the characters
in the string is random.

iex> capitalize_sentences("oh. a DOG. woof. ")
"Oh. A dog. Woof. "

➤ Exercise: StringsAndBinaries-7
Chapter 7 had an exercise about calculating sales tax on page 114. We
now have the sales information in a file of comma-separated id, ship_to,
and amount values. The file looks like this:

id,ship_to,net_amount
123,:NC,100.00
124,:OK,35.50
125,:TX,24.00
126,:TX,44.80
127,:NC,25.00
128,:MA,10.00
129,:CA,102.00
120,:NC,50.00

report erratum • discuss

Binaries and Pattern Matching • 131

http://media.pragprog.com/titles/elixir16/code/strings/utf-iterate.ex
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-6
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-7
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Write a function that reads and parses this file and then passes the result
to the sales_tax function. Remember that the data should be formatted into
a keyword list, and that the fields need to be the correct types (so the id
field is an integer, and so on).

You’ll need the library functions File.open, IO.read(file, :line), and IO.stream(file).

Familiar Yet Strange
String handling in Elixir is the result of a long evolutionary process in the
underlying Erlang environment. If we were starting from scratch, things would
probably look a little different. But once you get over the slightly strange way
that strings are matched using binaries, you’ll find that it works out well. In
particular, pattern matching makes it very easy to look to strings that start
with a particular sequence, which in turn makes simple parsing tasks a
pleasure to write.

You may have noticed that we’re a long way into the book and haven’t yet
talked about control-flow constructs such as if and case. This is deliberate:
we use them less often in Elixir than in more conventional languages. However,
we still need them, so they are the subject of the next chapter.

Chapter 11. Strings and Binaries • 132

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 12

In this chapter, you'll see:
• if and unless
• cond (a multiway if)
• case (a pattern-matching switch)
• Exceptions

Control Flow
Elixir code tries to be declarative, not imperative.

In Elixir we write lots of small functions, and a combination of guard clauses
and pattern matching of parameters replaces most of the control flow seen
in other languages.

However, Elixir does have a small set of control-flow constructs. The reason
I’ve waited so long to introduce them is that I want you to try not to use them
much. You definitely will, and should, drop the occasional cond or case into
your code. But before you do, consider more functional alternatives. The
benefit will become obvious as you write more code—functions written without
explicit control flow tend to be shorter and more focused. They’re easier to
read, test, and reuse. If you end up with a 10- or 20-line function in an Elixir
program, it is pretty much guaranteed that it will contain one of the constructs
in this chapter and that you can simplify it.

So, forewarned, let’s go.

if and unless
In Elixir, if and its evil twin, unless, take two parameters: a condition and a
keyword list, which can contain the keys do: and else:. If the condition is truthy,
the if expression evaluates the code associated with the do: key; otherwise it
evaluates the else: code. The else: branch may be absent.

iex> if 1 == 1, do: "true part", else: "false part"
"true part"

iex> if 1 == 2, do: "true part", else: "false part"
"false part"

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Just as it does with function definitions, Elixir provides some syntactic sugar.
You can write the first of the previous examples as follows:

iex> if 1 == 1 do
...> "true part"
...> else
...> "false part"
...> end
true part

unless is similar:

iex> unless 1 == 1, do: "error", else: "OK"
"OK"
iex> unless 1 == 2, do: "OK", else: "error"
"OK"
iex> unless 1 == 2 do
...> "OK"
...> else
...> "error"
...> end
"OK"

The value of if and unless is the value of the expression that was evaluated.

cond
The cond macro lets you list out a series of conditions, each with associated
code. It executes the code corresponding to the first truthy conditions.

In the game of FizzBuzz, children count up from 1. If the number is a multiple
of three, they say “Fizz.” For multiples of five, they say “Buzz.” For multiples
of both, they say “FizzBuzz.” Otherwise, they say the number.

In Elixir, we could code this as follows:

control/fizzbuzz.ex
defmodule FizzBuzz doLine 1

-

def upto(n) when n > 0, do: _upto(1, n, [])-

-

defp _upto(_current, 0, result), do: Enum.reverse result5

-

defp _upto(current, left, result) do-

next_answer =-

cond do-

rem(current, 3) == 0 and rem(current, 5) == 0 ->10

"FizzBuzz"-

rem(current, 3) == 0 ->-

"Fizz"-

rem(current, 5) == 0 ->-

Chapter 12. Control Flow • 134

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/control/fizzbuzz.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

"Buzz"15

true ->-

current-

end-

_upto(current+1, left-1, [next_answer | result])-

end20

end-

The cond starts on line 8. We assign the value of the cond expression to
next_answer. Inside the cond, we have four alternatives—the current number is
a multiple of 3 and 5, just 3, just 5, or neither. Elixir examines each in turn
and returns the value of the expression following the -> for the first true one.
The _upto function then recurses to find the next value. Note the use of true ->
to handle the case where none of the previous conditions match. This is the
equivalent of the else or default stanza of a more traditional case statement.

There’s a minor problem, though. The result list we build always has the most
recent value as its head. When we finish, we’ll end up with a list that has the
answers in reverse order. That’s why in the anchor case (when left is zero),
we reverse the result before returning it. This is a very common pattern. And
don’t worry about performance—list reversal is highly optimized.

Let’s try the code in IEx:

iex> c("fizzbuzz.ex")
[FizzBuzz]
iex> FizzBuzz.upto(20)
[1, 2, "Fizz", 4, "Buzz", "Fizz", 7, 8, "Fizz", "Buzz", 11, "Fizz",
.. 13, 14, "FizzBuzz", 16, 17, "Fizz", 19, "Buzz"]

In this case, we could do something different and remove the call to reverse.
If we process the numbers in reverse order (so we start at n and end at 1),
the resulting list will be in the correct order.

control/fizzbuzz1.ex
defmodule FizzBuzz do

def upto(n) when n > 0, do: _downto(n, [])

defp _downto(0, result), do: result
defp _downto(current, result) do

next_answer =
cond do

rem(current, 3) == 0 and rem(current, 5) == 0 ->
"FizzBuzz"

rem(current, 3) == 0 ->
"Fizz"

rem(current, 5) == 0 ->
"Buzz"

true ->

report erratum • discuss

cond • 135

http://media.pragprog.com/titles/elixir16/code/control/fizzbuzz1.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

current
end

_downto(current-1, [next_answer | result])
end

end

This code is quite a bit cleaner than the previous version. However, it is also
slightly less idiomatic—readers will expect to traverse the numbers in a nat-
ural order and reverse the result.

There’s a third option. FizzBuzz transforms a number into a string. We like
to code things as transformations, so let’s use Enum.map to transform the range
of numbers from 1 to n to the corresponding FizzBuzz words.

control/fizzbuzz2.ex
defmodule FizzBuzz do

def upto(n) when n > 0 do
1..n |> Enum.map(&fizzbuzz/1)

end

defp fizzbuzz(n) do
cond do
rem(n, 3) == 0 and rem(n, 5) == 0 ->

"FizzBuzz"
rem(n, 3) == 0 ->

"Fizz"
rem(n, 5) == 0 ->

"Buzz"
true ->

n
end

end
end

This section is intended to show you how cond works, but you’ll often find that
it’s better not to use it, and instead to take advantage of pattern matching in
function calls. The choice is yours.

control/fizzbuzz3.ex
defmodule FizzBuzz do

def upto(n) when n > 0, do: 1..n |> Enum.map(&fizzbuzz/1)

defp fizzbuzz(n), do: _fizzword(n, rem(n, 3), rem(n, 5))

defp _fizzword(_n, 0, 0), do: "FizzBuzz"
defp _fizzword(_n, 0, _), do: "Fizz"
defp _fizzword(_n, _, 0), do: "Buzz"
defp _fizzword(n, _, _), do: n

end

Chapter 12. Control Flow • 136

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/control/fizzbuzz2.ex
http://media.pragprog.com/titles/elixir16/code/control/fizzbuzz3.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

case
case lets you test a value against a set of patterns, executes the code associated
with the first pattern that matches, and returns the value of that code. The
patterns may include guard clauses.

For example, the File.open function returns a two-element tuple. If the open is
successful, it returns {:ok, file}, where file is an identifier for the open file. If
the open fails, it returns {:error, reason}. We can use case to take the appropriate
action when we open a file. (Here, the code opens its own source file.)

control/case.ex
case File.open("case.ex") do
{ :ok, file } ->

IO.puts "First line: #{IO.read(file, :line)}"
{ :error, reason } ->

IO.puts "Failed to open file: #{reason}"
end

produces

First line: case File.open("case.ex") do

If we change the file name to something that doesn’t exist and then rerun the
code, we instead get Failed to open file: enoent.

We can use the full power of nested pattern matches:

control/case1.exs
defmodule Users do

dave = %{ name: "Dave", state: "TX", likes: "programming" }
case dave do

%{state: some_state} = person ->
IO.puts "#{person.name} lives in #{some_state}"

_ ->
IO.puts "No matches"

end
end

We’ve seen how to employ guard clauses to refine the pattern used when
matching functions. We can do the same with case.

control/case2.exs
dave = %{name: "Dave", age: 27}
case dave do

person = %{age: age} when is_number(age) and age >= 21 ->
IO.puts "You are cleared to enter the Foo Bar, #{person.name}"

_ ->
IO.puts "Sorry, no admission"

end

report erratum • discuss

case • 137

http://media.pragprog.com/titles/elixir16/code/control/case.ex
http://media.pragprog.com/titles/elixir16/code/control/case1.exs
http://media.pragprog.com/titles/elixir16/code/control/case2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Raising Exceptions
First, the official warning: exceptions in Elixir are not control-flow structures.
Instead, Elixir exceptions are intended for things that should never happen
in normal operation. That means the database going down or a name server
failing to respond could be considered exceptional. Failing to open a configu-
ration file whose name is fixed could be seen as exceptional. However, failing
to open a file whose name a user entered is not. (You could anticipate that a
user might mistype it every now and then.)

Raise an exception with the raise function. At its simplest, you pass it a string
and it generates an exception of type RuntimeError.

iex> raise "Giving up"
** (RuntimeError) Giving up

You can also pass the type of the exception, along with other optional attributes.
All exceptions implement at least the message attribute.

iex> raise RuntimeError
** (RuntimeError) runtime error
iex> raise RuntimeError, message: "override message"
** (RuntimeError) override message

You use exceptions far less in Elixir than in other languages—the design
philosophy is that errors should propagate back up to an external, supervising
process. We’ll cover this when we talk about OTP supervisors on page 247.

Elixir has all the usual exception-catching mechanisms. To emphasize how
little you should use them, I’ve described them in an appendix on page 355.

Designing with Exceptions
If File.open succeeds, it returns {:ok, file}, where file is the service that gives you
access to the file. If it fails, it returns {:error, reason}. So, for code that knows
a file open might not succeed and wants to handle the fact, you might write

case File.open(user_file_name) do
{:ok, file} ->

process(file)
{:error, message} ->

IO.puts :stderr, "Couldn't open #{user_file_name}: #{message}"
end

If instead you expect the file to open successfully every time, you could raise
an exception on failure.

Chapter 12. Control Flow • 138

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

case File.open("config_file") do
{:ok, file} ->

process(file)
{:error, message} ->

raise "Failed to open config file: #{message}"
end

Or you could let Elixir raise an exception for you and write

{ :ok, file } = File.open("config_file")
process(file)

If the pattern match on the first line fails, Elixir will raise a MatchError exception.
It won’t be as informative as our version that handled the error explicitly, but
if the error should never happen, this form is probably good enough (at least
until it triggers the first time and the operations folks say they’d like more
information).

An even better way to handle this is to use File.open!. The trailing exclamation
point in the method name is an Elixir convention—if you see it, you know the
function will raise an exception on error, and that exception will be meaningful.
So we could simply write

file = File.open!("config_file")

and get on with our lives.

Doing More with Less
Elixir has just a few forms of control flow: if, unless, cond, case, and (perhaps) raise.
But surprisingly, this doesn’t matter in practice. Elixir programs are rich and
expressive without a lot of branching code. And they’re easier to work with
as a result.

That concludes our basic tour of Elixir. Now let’s start putting it all together
and implement a full project.

Your Turn
➤ Exercise: ControlFlow-1

Rewrite the FizzBuzz example using case.

➤ Exercise: ControlFlow-2
We now have three different implementations of FizzBuzz. One uses cond,
one uses case, and one uses separate functions with guard clauses.

Take a minute to look at all three. Which do you feel best expresses the
problem. Which will be easiest to maintain?

report erratum • discuss

Doing More with Less • 139

http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The case style and the implementation using guard clauses are different
from control structures in most other languages. If you feel that one of
these was the best implementation, can you think of ways to remind
yourself to investigate these options as you write Elixir code in the future?

➤ Exercise: ControlFlow-3
Many built-in functions have two forms. The xxx form returns the tuple
{:ok, data} and the xxx! form returns data on success but raises an exception
otherwise. However, some functions don’t have the xxx! form.

Write an ok! function that takes an arbitrary parameter. If the parameter
is the tuple {:ok, data}, return the data. Otherwise, raise an exception
containing information from the parameter.

You could use your function like this:

file = ok! File.open("somefile")

Chapter 12. Control Flow • 140

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 13

In this chapter, you'll see:
• Project structure
• The mix build tool
• ExUnit testing framework
• Documentation

Organizing a Project
Let’s stop hacking and get serious.

You’ll want to organize your source code, write tests, and handle any depen-
dencies. And you’ll want to follow Elixir conventions, because that way you’ll
get support from the tools.

In this chapter we’ll look at mix, the Elixir build tool. We’ll investigate the
directory structure it uses and see how to manage external dependencies.
And we’ll end up using ExUnit to write tests for our code (and to validate the
examples in our code’s documentation). To motivate this, we’ll write a tool
that downloads and lists the n oldest issues from a GitHub project. Along the
way, we’ll need to find some libraries and make some design decisions typical
of an Elixir project. We’ll call our project issues.

The Project: Fetch Issues from GitHub
GitHub provides a nice web API for fetching issues.1 Simply issue a GET
request to

https://api.github.com/repos/user/project/issues

and you’ll get back a JSON list of issues. We’ll reformat this, sort it, and filter
out the oldest n, presenting the result as a table:

| created_at | title
----+----------------------+---
889 | 2013-03-16T22:03:13Z | MIX_PATH environment variable (of sorts)
892 | 2013-03-20T19:22:07Z | Enhanced mix test --cover
893 | 2013-03-21T06:23:00Z | mix test time reports
898 | 2013-03-23T19:19:08Z | Add mix compile --warnings-as-errors

1. http://developer.github.com/v3/

report erratum • discuss

http://developer.github.com/v3/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

How Our Code Will Do It
Our program will run from the command line. We’ll need to pass in a GitHub
user name, a project name, and an optional count. This means we’ll need
some basic command-line parsing.

We’ll need to access GitHub as an HTTP client, so we’ll have to find a library
that gives us the client side of HTTP. The response that comes back will be
in JSON, so we’ll need a library that handles JSON, too. We’ll need to be able
to sort the resulting structure. And finally, we’ll need to lay out selected fields
in a table.

We can think of this data transformation in terms of a production line. Raw
data enters at one end and is transformed by each of the stations in turn.

$ issues elixir-lang elixir

{ name,
project,

n }

github
json

internal
representation

sorted
data

subsetpretty table

parse fetch
from
GitHub

convert

sort�rst(n)table
format

Here we see data, starting at the command line and ending at pretty table.
At each stage, it undergoes a transformation (parse, fetch, and so on). These
transformations are the functions we write. We’ll cover each one in turn.

Step 1: Use Mix to Create Our New Project
Mix is a command-line utility that manages Elixir projects. Use it to create
new projects, manage a project’s dependencies, run tests, and run your code.
If you have Elixir installed, you also have mix. Try running it now:

Chapter 13. Organizing a Project • 142

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

$ mix help
mix # Run the default task (current: mix run)
mix archive # List all archives
mix archive.build # Archive this project into a .ez file
: : : :

mix new # Create a new Elixir project
mix run # Run the given file or expression
mix test # Run a project's tests
iex -S mix # Start IEx and run the default task

This is a list of the standard tasks that come with mix. (Your list may be a
little different, depending on your version of Elixir.) For more information on
a particular task, use mix help taskname.

$ mix help deps

List all dependencies and their status.

Dependencies must be specified in the `mix.exs` file in one of
the following formats:
. . .

You can write your own mix tasks, for a project and to share between projects.2

Create the Project Tree
Each Elixir project lives in its own directory tree. If you use mix to manage
this tree, then you’ll follow the mix conventions (which are also the conventions
of the Elixir community). We’ll use these conventions in the rest of this chapter.

We’ll call our project issues, so it will go in a directory named issues. We’ll create
this directory using mix.

At the command line, navigate to a place where you want this new project to
live, and type

$ mix new issues
* creating README.md

: :
* creating test
* creating test/test_helper.exs
* creating test/issues_test.exs

Your mix project was created successfully.
You can use mix to compile it, test it, and more:

cd issues
mix test

Run `mix help` for more commands.

2. http://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

report erratum • discuss

Step 1: Use Mix to Create Our New Project • 143

http://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In tree form, the newly created files and directories look like this:

issues
├── .formatter.exs
├── .gitignore
├── README.md
├── config
│ └── config.exs
├── lib
│ └── issues.ex
├── mix.exs
└── test

├── issues_test.exs
└── test_helper.exs

Change into the issues/ directory. This is a good time to set up version control.
I use Git, so I do

$ git init
$ git add .
$ git commit -m "Initial commit of new project"

(I don’t want to clutter the book with version-control stuff, so that’s the last
time I’ll mention it. Make sure you follow your own version-control practices
as we go along.)

Our new project contains three directories and some files.

.formatter.exs
Configuration used by the source code formatter

.gitignore
Lists the files and directories generated as by-products of the build and
not to be saved in the repository.

README.md
A place to put a description of your project (in Markdown format). If you
store your project on GitHub, this file’s contents will appear on the
project’s home page.

config/
Eventually we’ll put some application-specific configuration here.

lib/
This is where our project’s source lives. Mix has already added a top-level
module (issues.ex in our case).

Chapter 13. Organizing a Project • 144

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

mix.exs
This source file contains our project’s configuration options. We will be
adding stuff to this as our project progresses.

test/
A place to store our tests. Mix has already created a helper file and a stub
for unit tests of the issues module.

Now our job is to add our code. But before we do, let’s think a little about the
implementation.

Transformation: Parse the Command Line
Let’s start with the command line. We really don’t want to couple the handling
of command-line options into the main body of our program, so let’s write a
separate module to interface between what the user types and what our pro-
gram does. By convention this module is called Project.CLI (so our code would
be in Issues.CLI). Also by convention, the main entry point to this module will
be a function called run that takes an array of command-line arguments.

Where should we put this module?

Elixir has a convention. Inside the lib/ directory, create a subdirectory with
the same name as the project (so we’d create the directory lib/issues/). This
directory will contain the main source for our application, one module per
file. And each module will be namespaced inside the Issues module—the
module naming follows the directory naming.

In this case, the module we want to write is Issues.CLI—it is the CLI module
nested inside the Issues module. Let’s reflect that in the directory structure
and put cli.ex in the lib/issues directory:

lib
├── issues
│ └── cli.ex
└── issues.ex

Elixir comes bundled with an option-parsing library,3 so we will use that.
We’ll tell it that -h and --help are possible switches, and anything else is an
argument. It returns a tuple, where the first element is a keyword list of the
options and the second is a list of the remaining arguments. Our initial CLI
module looks like the following:

3. http://elixir-lang.org/docs/stable/elixir/OptionParser.html

report erratum • discuss

Transformation: Parse the Command Line • 145

http://elixir-lang.org/docs/stable/elixir/OptionParser.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

project/0/issues/lib/issues/cli.ex
defmodule Issues.CLI do

@default_count 4

@moduledoc """
Handle the command line parsing and the dispatch to
the various functions that end up generating a
table of the last _n_ issues in a github project
"""

def run(argv) do
parse_args(argv)

end

@doc """
`argv` can be -h or --help, which returns :help.

Otherwise it is a github user name, project name, and (optionally)
the number of entries to format.

Return a tuple of `{ user, project, count }`, or `:help` if help was given.
"""
def parse_args(argv) do

parse = OptionParser.parse(argv, switches: [help: :boolean],
aliases: [h: :help])

case parse do

{ [help: true], _, _ }
-> :help

{ _, [user, project, count], _ }
-> { user, project, count }

{ _, [user, project], _ }
-> { user, project, @default_count }

_ -> :help

end
end

end

Write Some Basic Tests
At this point, I get a little nervous if I don’t have some tests. Fortunately,
Elixir comes with a wonderful (and simple) testing framework called ExUnit.

Chapter 13. Organizing a Project • 146

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/0/issues/lib/issues/cli.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Have a look at the file test/issues_test.exs.

project/0/issues/test/issues_test.exs
defmodule IssuesTest do

use ExUnit.Case
doctest Issues

test "greets the world" do
assert Issues.hello() == :world

end
end

It acts as a template for all the test files you write. I just copy and paste the
boilerplate into separate test files as I need them. So let’s write tests for our
CLI module, putting those tests into the file test/cli_test.exs. (Test file names must
end with _test.) We’ll test that the option parser successfully detects the -h and
--help options, and that it returns the arguments otherwise. We’ll also check
that it supplies a default value for the count if only two arguments are given.

project/1/issues/test/cli_test.exs
defmodule CliTest do

use ExUnit.Case
doctest Issues

import Issues.CLI, only: [parse_args: 1]

test ":help returned by option parsing with -h and --help options" do
assert parse_args(["-h", "anything"]) == :help
assert parse_args(["--help", "anything"]) == :help

end

test "three values returned if three given" do
assert parse_args(["user", "project", "99"]) == { "user", "project", 99 }

end

test "count is defaulted if two values given" do
assert parse_args(["user", "project"]) == { "user", "project", 4 }

end
end

These tests all use the basic assert macro that ExUnit provides. This macro is
clever—if an assertion fails, it can extract the values from the expression you
pass it, giving you a nice error message.

To run our tests, we’ll use the mix test task.

report erratum • discuss

Write Some Basic Tests • 147

http://media.pragprog.com/titles/elixir16/code/project/0/issues/test/issues_test.exs
http://media.pragprog.com/titles/elixir16/code/project/1/issues/test/cli_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

issues$ mix test
Compiled lib/issues.ex
Compiled lib/issues/cli.ex
Generated issues app
..

Failures:

1) test three values returned if three given (CliTest)
test/cli_test.exs:11
Assertion with == failed
code: parse_args(["user", "project", "99"]) == {"user", "project", 99}
lhs: {"user", "project", "99"}
rhs: {"user", "project", 99}
stacktrace:

test/cli_test.exs:13
.
Finished in 0.01 seconds
4 tests, 1 failures

One of the four tests failed. When we pass a count as the third parameter,
our code blows up. See how the assertion shows you its type (== in this case),
the line of code that failed, and the two values that we compared. You can
see the difference between the left-hand side (lhs), which is the value returned
by parse_args, and the expected value (the rhs)—if your terminal and your eyes
support it, you’ll see that the "99" in the line labelled lhs: is colored red, and
the 99 in the next line is green. We were expecting to get a number as the
count, but we got a string.

That’s easily fixed. The built-in function String.to_integer converts a binary (a
string) into an integer.

project/1/issues/lib/issues/cli.ex
def parse_args(argv) do

parse = OptionParser.parse(argv, switches: [help: :boolean],
aliases: [h: :help])

case parse do

{ [help: true], _, _ } -> :help
{ _, [user, project, count], _ } -> { user, project,➤

String.to_integer(count) }➤

{ _, [user, project], _ } -> { user, project, @default_count }
_ -> :help
end

end

Chapter 13. Organizing a Project • 148

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/1/issues/lib/issues/cli.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: OrganizingAProject-1

Do what I did. Honest. Create the project and write and test the option
parser. It’s one thing to read about it, but you’ll be doing this a lot, so
you may as well start now.

Refactor: Big Function Alert
Our parse_args function is waving two red flags. First, it contains conditional
logic. Second, it is too long. Let’s split it up.

project/1a/issues/lib/issues/cli.ex
def parse_args(argv) do

OptionParser.parse(argv, switches: [help: :boolean],
aliases: [h: :help])

|> elem(1)
|> args_to_internal_representation()

end

def args_to_internal_representation([user, project, count]) do
{ user, project, String.to_integer(count) }

end

def args_to_internal_representation([user, project]) do
{ user, project, @default_count }

end

def args_to_internal_representation(_) do # bad arg or --help
:help

end

And run the tests:

issues$ mix test
......

Finished in 0.05 seconds
2 doctests, 4 tests, 0 failures

Transformation: Fetch from GitHub
Now let’s continue down our data-transformation chain. Having parsed our
arguments, we need to transform them by fetching data from GitHub. So we’ll
extend our run function to call a process function, passing it the value returned
from the parse_args function. We could have written this:

process(parse_args(argv))

report erratum • discuss

Refactor: Big Function Alert • 149

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-1
http://media.pragprog.com/titles/elixir16/code/project/1a/issues/lib/issues/cli.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

But to understand this code, you have to read it right to left. I prefer to make
the chain more explicit using the Elixir pipe operator:

project/1a/issues/lib/issues/cli.ex
def run(argv) do

argv
|> parse_args
|> process

end

We need two variants of the process function. One handles the case where the
user asked for help and parse_args returned :help. The other handles the case
where a user, a project, and a count are returned.

project/1a/issues/lib/issues/cli.ex
def process(:help) do

IO.puts """
usage: issues <user> <project> [count | #{@default_count}]
"""
System.halt(0)

end

def process({user, project, _count}) do
Issues.GithubIssues.fetch(user, project)

end

We can use mix to run our function. Let’s first see if help gets displayed.

$ mix run -e 'Issues.CLI.run(["-h"])'
usage: issues <user> <project> [count | 4]

You pass mix run an Elixir expression, which gets evaluated in the context of
your application. Mix will recompile your application, as it is out of date,
before executing the expression.

If we pass it user and project names, however, it’ll blow up because we haven’t
written that code yet.

% mix run -e 'Issues.CLI.run(["elixir-lang", "elixir"])'
** (UndefinedFunctionError) undefined function: Issues.GithubIssues.fetch/2

GithubIssues.fetch("elixir-lang", "elixir")

Let’s write that code now. Our program will act as an HTTP client, accessing
GitHub through its web API. So, it looks like we’ll need an external library.

Chapter 13. Organizing a Project • 150

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/1a/issues/lib/issues/cli.ex
http://media.pragprog.com/titles/elixir16/code/project/1a/issues/lib/issues/cli.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Step 2: Use Libraries
Elixir comes with a bunch of libraries preinstalled. Some are written in Elixir,
and others in Erlang.

The first port of call is http://elixir-lang.org/docs.html, the Elixir documentation.
Often you’ll find a built-in library that does what you want.

Next, see if any standard Erlang libraries do what you need. This isn’t a
simple task. Visit http://erlang.org/doc/ and look in the left sidebar for Application
Groups. There you’ll find libraries sorted by top-level category.

If you find what you’re looking for in either of these places, you’re all set, as
all these libraries are already available to your application. But if the built-in
libraries don’t contain what you need, you’ll have to add an external dependency.

Finding an External Library
Package managers: Ruby has RubyGems, Python has pip, Node.js has npm.

And Elixir has hex.

Visit https://hex.pm and search its list of packages that integrate nicely with a
mix-based project.

If all else fails, Google and GitHub are your friends. Search for terms such
as elixir http client or erlang distributed logger, and you’re likely to turn up
the libraries you need.

In our case, we need an HTTP client. We find that Elixir has nothing built in,
but hex.pm has a number of HTTP client libraries.

To me, HTTPoison looks like a good option. So how do we include it in our
project?

Adding a Library to Your Project
Mix takes the view that all external libraries should be copied into the project’s
directory structure. The good news is that it handles all this for us—we just
need to list the dependencies, and it does the rest. Remember the mix.exs file
at the top level of our project? Here is that original version.

report erratum • discuss

Step 2: Use Libraries • 151

http://elixir-lang.org/docs.html
http://erlang.org/doc/
https://hex.pm
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

project/0/issues/mix.exs
defmodule Issues.MixProject do

use Mix.Project

def project do
[

app: :issues,
version: "0.1.0",
elixir: "~> 1.6-dev",
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

Run "mix help compile.app" to learn about applications.
def application do

[
extra_applications: [:logger]

]
end

Run "mix help deps" to learn about dependencies.
defp deps do

[
{:dep_from_hexpm, "~> 0.3.0"},
{:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git", tag: "0.1.0"},

]
end

end

We add new dependencies to the deps function. As the HTTPoison package is
in hex.pm, that’s very simple. We just give the name and the version we want.

project/1a/issues/mix.exs
defp deps do

[
{ :httpoison, "~> 1.0.0" }

]
end

In this case, we give the version as "~> 1.0.0". This matches any version of
HTTPoison with a major version of 1 and a minor version of 0 or greater. In
IEx, type h Version for more details.

Once your mix.exs file is updated, you’re ready to have mix manage your
dependencies.

Use mix deps to list the dependencies and their status:

$ mix deps
* httpoison (package)

the dependency is not available, run `mix deps.get`

Chapter 13. Organizing a Project • 152

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/0/issues/mix.exs
http://media.pragprog.com/titles/elixir16/code/project/1a/issues/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Download the dependencies with mix deps.get:

Resolving Hex dependencies...
Dependency resolution completed:

certifi 2.0.0
hackney 1.10.1
httpoison 0.13.0
idna 5.1.0
metrics 1.0.1
mimerl 1.0.2
ssl_verify_fun 1.1.1
unicode_util_compat 0.3.1

* Getting httpoison (Hex package)
Checking package (https://repo.hex.pm/tarballs/httpoison-0.13.0.tar)
Using locally cached package
. . .

Run mix deps again:

* mimerl (Hex package) (rebar3)
locked at 1.0.2 (mimerl) 993f9b0e
the dependency build is outdated, please run "mix deps.compile"

* metrics (Hex package) (rebar3)
locked at 1.0.1 (metrics) 25f094de
the dependency build is outdated, please run "mix deps.compile"

* unicode_util_compat (Hex package) (rebar3)
locked at 0.3.1 (unicode_util_compat) a1f612a7
the dependency build is outdated, please run "mix deps.compile"
. . .

* httpoison (Hex package) (mix)
locked at 0.9.0 (httpoison) 68187a2d
the dependency build is outdated, please run "mix deps.compile"

This shows that the HTTPoison library is installed but that it hasn’t yet been
compiled. Mix also remembers the exact version of each library it installs in
the file mix.lock. This means that at any point in the future you can get the
same version of the library you use now.

Don’t worry that the library isn’t compiled—mix will automatically compile it
the first time we need it.

If you look at your project tree, you’ll find a new directory called deps containing
your dependencies. Note that these dependencies are themselves just projects,
so you can browse their source and read their documentation.

Your Turn
➤ Exercise: OrganizingAProject-2

Add the dependency to your project and install it.

report erratum • discuss

Step 2: Use Libraries • 153

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Back to the Transformation
So, back to our problem. We have to write the function GithubIssues.fetch, which
transforms a user name and project into a data structure containing that
project’s issues. The HTTPoison page on GitHub gives us a clue,4 and we write
a new module, Issues.GithubIssues:

project/1a/issues/lib/issues/github_issues.ex
defmodule Issues.GithubIssues do

@user_agent [{"User-agent", "Elixir dave@pragprog.com"}]

def fetch(user, project) do
issues_url(user, project)
|> HTTPoison.get(@user_agent)
|> handle_response

end

def issues_url(user, project) do
"https://api.github.com/repos/#{user}/#{project}/issues"

end

def handle_response({ :ok, %{status_code: 200, body: body}}) do
{ :ok, body }

end

def handle_response({ _, %{status_code: _, body: body}}) do
{ :error, body }

end
end

We simply call get on the GitHub URL. (We also have to pass in a user-agent
header to keep the GitHub API happy.) What comes back is a structure. If we
have a successful response, we return a tuple whose first element is :ok, along
with the body. Otherwise we return an :error tuple, also with the body.

There’s one more thing. The examples on the HTTPoison GitHub page call
HTTPoison.start. That’s because HTTPoison actually runs as a separate applica-
tion, outside your main process. A lot of developers will copy this code, calling
start inline like this.

In older versions of Elixir, you could add HTTPoison to the list of applications
to start in mix.exs:

def application do
[applications: [:logger, :httpoison]]

end

This is no longer necessary. The fact that you have listed HTTPoison as a
dependency means that mix will automatically start it as an application.

4. https://github.com/edgurgel/httpoison

Chapter 13. Organizing a Project • 154

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/1a/issues/lib/issues/github_issues.ex
https://github.com/edgurgel/httpoison
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

What Does Application Mean?

OTP is the framework that manages suites of running applications. But just what is
an application?

I found the answer counterintuitive at first. Erlang programs—and, by extension,
Elixir programs—are often structured as suites of cooperating subapplications. Fre-
quently, the code that would be a library in another language is a subapplication in
Elixir. It might help to think of these as components or services.

We can play with this in IEx. Use the -S mix option to run mix before dropping
into interaction mode. Because this is the first time we’ve tried to run our
code since installing the dependencies, you’ll see them get compiled:

$ iex -S mix
Erlang/OTP 20 [erts-9.1] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-thr
eads:10] [hipe] [kernel-poll:false]

===> Compiling mimerl
===> Compiling metrics

: :
Generated issues app

iex(1)>

Let’s try it out. (The output is massaged to fit the page.)

iex> Issues.GithubIssues.fetch("elixir-lang", "elixir")
{:ok,
[

{"url":"https://api.github.com/repos/elixir-lang/elixir/issues/7121",
"repository_url":"https://api.github.com/repos/elixir-lang/elixir",
"labels_url":
"https://api.github.com/repos/elixir-lang/elixir/issues/7121/labels{/name}",
"events_url":"https://api.github.com/repos/elixir-lang/elixir/issues/7121/events",
"html_url":"https://github.com/elixir-lang/elixir/issues/7121",
"id":282654795,
"number":7121,
"title":"IEx.Helpers.h duplicate output for default arguments",
"user":{

"login":"wojtekmach",
"id":76071,
"avatar_url":"https://avatars0.githubusercontent.com/u/76071?v=4",
"gravatar_id":"",
"url":"https://api.github.com/users/wojtekmach",
"html_url":"https://github.com/wojtekmach",
"followers_url":"https://api.github.com/users/wojtekmach/followers",
.

report erratum • discuss

Step 2: Use Libraries • 155

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This tuple is the body of the GitHub response. The first element is set to :ok.
The second element is a string containing the data encoded in JSON format.

Transformation: Convert Response
We’ll need a JSON library to convert the response into a data structure.
Searching hex.pm, I found the poison library (no relation to HTTPoison), so
let’s add its dependency to our mix.exs file.5

project/2/issues/mix.exs
defp deps do

[
{ :httpoison, "~> 1.0.0" },
{ :poison, "~> 3.1" },

]
end

Run mix deps.get, and you’ll end up with poison installed.

To convert the body from a string, we call the Poison.Parser.parse! function when
we return the message from the GitHub API:

project/3/issues/lib/issues/github_issues.ex
def handle_response({ _, %{status_code: status_code, body: body}}) do

{
status_code |> check_for_error(),
body |> Poison.Parser.parse!()

}
end

defp check_for_error(200), do: :ok
defp check_for_error(_), do: :error

We also have to deal with a possible error response from the fetch, so back in the
CLI module we write a function that decodes the body and returns it on a success
response; the function extracts the error from the body and displays it otherwise.

project/3/issues/lib/issues/cli.ex
def process({user, project, _count}) do

Issues.GithubIssues.fetch(user, project)
|> decode_response()➤

end

def decode_response({:ok, body}), do: body

def decode_response({:error, error}) do
IO.puts "Error fetching from Github: #{error["message"]}"
System.halt(2)

end

5. https://github.com/devinus/poison

Chapter 13. Organizing a Project • 156

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/2/issues/mix.exs
http://media.pragprog.com/titles/elixir16/code/project/3/issues/lib/issues/github_issues.ex
http://media.pragprog.com/titles/elixir16/code/project/3/issues/lib/issues/cli.ex
https://github.com/devinus/poison
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The JSON that GitHub returns for a successful response is a list of maps,
where each map in the list contains a GitHub issue.

Dependencies That Aren’t in Hex

The dependencies you need are likely to be in hex, so mix will probably find them
automatically. However, sometimes you’ll need to go further afield. The good news is
that mix can also load dependencies from other sources. The most common is GitHub.

HTTPoison uses a library called Hackney. In earlier versions of the book, Hackney
wasn’t in hex.pm, so I had to add the following dependency to my mix.exs:

def deps do
[{ . . . },
{ :hackney, github: "benoitc/hackney" }

]
end

Application Configuration
Before we move on, there’s one little tweak I’d like to make. The issues_url
function hard-codes the GitHub URL. Let’s make this configurable.

Remember that when we created the project using mix new, it added a config/
directory containing config.exs. That file stores application-level configuration.

It should start with the line

use Mix.Config

We then write configuration information for each of the applications in our
project. Here we’re configuring the Issues application, so we write this code:

project/3a/issues/config/config.exs
use Mix.Config
config :issues, github_url: "https://api.github.com"

Each config line adds one or more key/value pairs to the given application’s
environment. If you have multiple lines for the same application, they accumu-
late, with duplicate keys in later lines overriding values from earlier ones.

In our code, we use Application.get_env to return a value from the environment.

project/3a/issues/lib/issues/github_issues.ex
use a module attribute to fetch the value at compile time
@github_url Application.get_env(:issues, :github_url)

def issues_url(user, project) do
"#{@github_url}/repos/#{user}/#{project}/issues"

end

report erratum • discuss

Transformation: Convert Response • 157

http://media.pragprog.com/titles/elixir16/code/project/3a/issues/config/config.exs
http://media.pragprog.com/titles/elixir16/code/project/3a/issues/lib/issues/github_issues.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Because the application environment is commonly used in Erlang code, you’ll
find yourself using the configuration facility to configure code you import, as
well as code you write.

Sometimes you may want to vary the configuration, perhaps depending on
your application’s environment. One way is to use the import_config function,
which reads configuration from a file. If your config.exs contains

use Mix.Config

import_config "#{Mix.env}.exs"

then Elixir will read dev.exs, test.exs, or prod.exs, depending on your environment.

You can override the default config file name (config/config.exs) using the --config
option to elixir.

Transformation: Sort Data
Have a look at the original design in the following figure.

$ issues elixir-lang elixir

{ name,
project,

n }

github
json

internal
representation

sorted
data

subsetpretty table

parse fetch
from
GitHub

convert

sort�rst(n)table
format

We’re making good progress—we’ve coded all the functions of the top conveyor
belt. Our next transformation is to sort the data on its created_at field, with the
newest entries first. And this can just use a standard Elixir library function,
sort/2. We could create a new module for this, but it would be pretty lonely.
For now we’ll put the function in the CLI module and keep an eye out for
opportunities to move it out if we add related functions later.

Chapter 13. Organizing a Project • 158

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

So now our CLI module contains this:

project/3b/issues/lib/issues/cli.ex
def process({user, project, _count}) do

Issues.GithubIssues.fetch(user, project)
|> decode_response()
|> sort_into_descending_order()➤

end

def sort_into_descending_order(list_of_issues) do
list_of_issues
|> Enum.sort(fn i1, i2 ->

i1["created_at"] >= i2["created_at"]
end)

end

That sort_into_descending_order function worries me a little—I get the comparison
the wrong way around about 50% of the time, so let’s write a little CLI test.

project/3b/issues/test/cli_test.exs
test "sort descending orders the correct way" do

result = sort_into_descending_order(fake_created_at_list(["c", "a", "b"]))
issues = for issue <- result, do: Map.get(issue, "created_at")
assert issues == ~w{ c b a }

end

defp fake_created_at_list(values) do
for value <- values,
do: %{"created_at" => value, "other_data" => "xxx"}

end

Update the import line at the top of the test:

import Issues.CLI, only: [parse_args: 1,
sort_into_descending_order: 1]

and run it:

$ mix test
.....
Finished in 0.00 seconds
5 tests, 0 failures

Lookin’ fine; mighty fine.

Transformation: Take First n Items
Our next transformation is to extract the first count entries from the list.
Resisting the temptation to write the function ourselves (How would you write
such a function?), we discover the built-in Enum.take:

report erratum • discuss

Transformation: Take First n Items • 159

http://media.pragprog.com/titles/elixir16/code/project/3b/issues/lib/issues/cli.ex
http://media.pragprog.com/titles/elixir16/code/project/3b/issues/test/cli_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def process({user, project, count}) do
Issues.GithubIssues.fetch(user, project)
|> decode_response()
|> sort_into_descending_order()
|> last(count)➤

end

def last(list, count) do
list
|> Enum.take(count)
|> Enum.reverse

end

Your Turn
➤ Exercise: OrganizingAProject-3

Bring your version of this project in line with the code here.

➤ Exercise: OrganizingAProject-4
(Tricky) Before reading the next section, see if you can write the code to
format the data into columns, like the sample output at the start of the
chapter. This is probably the longest piece of Elixir code you’ll have written.
Try to do it without using if or cond.

Transformation: Format the Table
All that’s left from our design is to create the formatted table. The following
would be a nice interface:

def process({user, project, count}) do
Issues.GithubIssues.fetch(user, project)
|> decode_response()
|> sort_into_ascending_order()
|> last(count)
|> print_table_for_columns(["number", "created_at", "title"])➤

end

We pass the formatter the list of columns to include in the table, and it writes
the table to standard output. The formatter doesn’t add any new project- or
design-related techniques, so we’ll just show the listing.

project/4/issues/lib/issues/table_formatter.ex
defmodule Issues.TableFormatter do

import Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

def print_table_for_columns(rows, headers) do
with data_by_columns = split_into_columns(rows, headers),

column_widths = widths_of(data_by_columns),
format = format_for(column_widths)

Chapter 13. Organizing a Project • 160

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-4
http://media.pragprog.com/titles/elixir16/code/project/4/issues/lib/issues/table_formatter.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

do
puts_one_line_in_columns(headers, format)
IO.puts(separator(column_widths))
puts_in_columns(data_by_columns, format)

end
end

def split_into_columns(rows, headers) do
for header <- headers do
for row <- rows, do: printable(row[header])

end
end

def printable(str) when is_binary(str), do: str
def printable(str), do: to_string(str)

def widths_of(columns) do
for column <- columns, do: column |> map(&String.length/1) |> max

end

def format_for(column_widths) do
map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"

end

def separator(column_widths) do
map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)

end

def puts_in_columns(data_by_columns, format) do
data_by_columns
|> List.zip
|> map(&Tuple.to_list/1)
|> each(&puts_one_line_in_columns(&1, format))

end

def puts_one_line_in_columns(fields, format) do
:io.format(format, fields)

end
end

And here are the tests for it:

project/4/issues/test/table_formatter_test.exs
defmodule TableFormatterTest do

use ExUnit.Case # bring in the test functionality
import ExUnit.CaptureIO # And allow us to capture stuff sent to stdout

alias Issues.TableFormatter, as: TF

@simple_test_data [
[c1: "r1 c1", c2: "r1 c2", c3: "r1 c3", c4: "r1+++c4"],
[c1: "r2 c1", c2: "r2 c2", c3: "r2 c3", c4: "r2 c4"],
[c1: "r3 c1", c2: "r3 c2", c3: "r3 c3", c4: "r3 c4"],
[c1: "r4 c1", c2: "r4++c2", c3: "r4 c3", c4: "r4 c4"]

]

report erratum • discuss

Transformation: Format the Table • 161

http://media.pragprog.com/titles/elixir16/code/project/4/issues/test/table_formatter_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

@headers [:c1, :c2, :c4]

def split_with_three_columns do
TF.split_into_columns(@simple_test_data, @headers)

end

test "split_into_columns" do
columns = split_with_three_columns()
assert length(columns) == length(@headers)
assert List.first(columns) == ["r1 c1", "r2 c1", "r3 c1", "r4 c1"]
assert List.last(columns) == ["r1+++c4", "r2 c4", "r3 c4", "r4 c4"]

end

test "column_widths" do
widths = TF.widths_of(split_with_three_columns())
assert widths == [5, 6, 7]

end

test "correct format string returned" do
assert TF.format_for([9, 10, 11]) == "~-9s | ~-10s | ~-11s~n"

end

test "Output is correct" do
result = capture_io fn ->
TF.print_table_for_columns(@simple_test_data, @headers)

end
assert result == """
c1 | c2 | c4
------+--------+--------
r1 c1 | r1 c2 | r1+++c4
r2 c1 | r2 c2 | r2 c4
r3 c1 | r3 c2 | r3 c4
r4 c1 | r4++c2 | r4 c4
"""

end
end

(Although you can’t see it here, the output we compare against in the last
test contains trailing whitespace.)

Rather than clutter the process function in the CLI module with a long module
name, I chose to use import to make the print function available without a
module qualifier. This goes near the top of cli.ex.

defmodule Issues.CLI do

import Issues.TableFormatter, only: [print_table_for_columns: 2]

This code also uses a great Elixir testing feature. By importing ExUnit.CaptureIO,
we get access to the capture_io function. This runs the code passed to it but
captures anything written to standard output, returning it as a string.

Chapter 13. Organizing a Project • 162

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Step 3: Make a Command-Line Executable
Although we can run our code by calling the run function via mix, it isn’t friendly
for other users. So let’s create something we can run from the command line.

Mix can package our code, along with its dependencies, into a single file that
can be run on any Unix-based platform. This uses Erlang’s escript utility,
which can run precompiled programs stored as a Zip archive. In our case,
the program will be run as issues.

When escript runs a program, it looks in your mix.exs file for the option escript. This
should return a keyword list of escript configuration settings. The most important
of these is main_module:, which must be set to the name of a module containing
a main function. It passes the command-line arguments to this main function
as a list of character lists (not binaries). As this seems to be a command-line
concern, we’ll put the main function in Issues.CLI. Here’s the update to mix.exs:

project/4/issues/mix.exs
defmodule Issues.MixProject do

use Mix.Project

def project do
[

app: :issues,
escript: escript_config(),➤

version: "0.1.0",
elixir: "~> 1.6-dev",
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

def application do
[

extra_applications: [:logger]
]

end

defp deps do
[
{ :httpoison, "~> 1.0.0" },
{ :poison, "~> 3.1" },

]
end
defp escript_config do➤

[➤

main_module: Issues.CLI➤

]➤

end➤

end

report erratum • discuss

Step 3: Make a Command-Line Executable • 163

http://media.pragprog.com/titles/elixir16/code/project/4/issues/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Now let’s add a main function to our CLI. In fact, all we need to do is rename
the existing run function:

project/4/issues/lib/issues/cli.ex
def main(argv) do

argv
|> parse_args
|> process

end

Then we package our program using mix:

$ mix escript.build
Generated escript issues

Now we can run the app locally. We can also send it to a friend—it will run
on any computer that has Erlang installed.

$./issues pragdave earmark 4
num | created_at | title
----+----------------------+---

159 | 2017-09-21T10:01:24Z | Block level HTML ... messes up formatting
161 | 2017-10-11T09:12:59Z | Be clear in README ... GFM are supported.
162 | 2017-10-11T16:59:50Z | Working on #161, looking at rendering
171 | 2017-12-03T11:08:40Z | Fix typespecs

Step 4: Add Some Logging
Imagine a large Elixir application—dozens of processes potentially running
across a number of nodes. You’d really want a standard way to keep track of
significant events as it runs. Enter the Elixir logger.

The default mix.exs starts the logger for your application.

project/5/issues/mix.exs
def application do

[
extra_applications: [:logger]

]
end

The logger supports four levels of message—in increasing order of severity
they are debug, info, warn, and error. You select the level of logging in two ways.

First, you can determine at compile time the minimum level of logging to
include. Logging below this level is not even compiled into your code. The
compile-time level is set in the config/config.exs file:

Chapter 13. Organizing a Project • 164

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/4/issues/lib/issues/cli.ex
http://media.pragprog.com/titles/elixir16/code/project/5/issues/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

project/5/issues/config/config.exs
use Mix.Config

config :issues,
github_url: "https://api.github.com"

config :logger,➤

compile_time_purge_level: :info➤

Next, you can choose to change the minimum log level at runtime by calling
Logger.configure. (Clearly, this cannot enable log levels that you excluded at
compile time.)

After all this configuration, it’s time to add some logging.

The basic logging functions are Logger.debug, .info, .warn, and .error. Each function
takes either a string or a zero-arity function:

Logger.debug "Order total #{total(order)}"
Logger.debug fn -> "Order total #{total(order)}" end

Why have the function version? Perhaps the calculation of the order total is
expensive. In the first version, we’ll always call it to interpolate the value into
our string, even if the runtime log level is set to ignore debug-level messages.
In the function variant, though, the total function will be invoked only if the
log message is needed.

Anyway, here’s a version of our fetch function with some logging:

project/5/issues/lib/issues/github_issues.ex
defmodule Issues.GithubIssues do

require Logger➤

@user_agent [{"User-agent", "Elixir dave@pragprog.com"}]

use a module attribute to fetch the value at compile time
@github_url Application.get_env(:issues, :github_url)

def fetch(user, project) do
Logger.info("Fetching #{user}'s project #{project}")➤

issues_url(user, project)
|> HTTPoison.get(@user_agent)
|> handle_response

end

def issues_url(user, project) do
"#{@github_url}/repos/#{user}/#{project}/issues"

end

report erratum • discuss

Step 4: Add Some Logging • 165

http://media.pragprog.com/titles/elixir16/code/project/5/issues/config/config.exs
http://media.pragprog.com/titles/elixir16/code/project/5/issues/lib/issues/github_issues.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def handle_response({ _, %{status_code: status_code, body: body}}) do
Logger.info("Got response: status code=#{status_code}")➤

Logger.debug(fn -> inspect(body) end)➤

{
status_code |> check_for_error(),
body |> Poison.Parser.parse!()

}
end

defp check_for_error(200), do: :ok
defp check_for_error(_), do: :error

end

Note the use of require Logger at the top of the module. If you forget this (and I
do every time), you’ll get an error when you make the first call to Logger.

We can play with the new code in IEx:

iex> Issues.CLI.process {"pragdave", "earmark", 1}
19:53:44.207 [info] Fetching pragdave's project earmark
19:53:44.804 [info] Got response: status code=200
num | created_at | title
----+----------------------+--------------
171 | 2017-12-03T11:08:40Z | Fix typespecs
:ok

Notice that the debug-level message is not displayed.

Step 5: Create Project Documentation
Java has Javadoc, Ruby has RDoc, and Elixir has ExDoc—a documentation
tool that describes your project, showing the modules, the things defined in
them, and any documentation you’ve written for them.

Using it is easy. First, add the ExDoc dependency to your mix.exs file. You’ll
also need to add an output formatter—I use earmark, a pure-Elixir Markdown-
to-HTML convertor.

defp deps do
[

{ :httpoison, "~> 1.0.0" },
{ :poison, "~> 3.1.0" },
{ :ex_doc, "~> 0.18.1" },
{ :earmark, "~> 1.2.4" },

]
end

While you’re in the mix.exs, you can add a project name and (if your project is
in GitHub) a URL. The latter allows ExDoc to provide live links to your source
code. These parameters go in the project function:

Chapter 13. Organizing a Project • 166

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def project do
[app: :issues,

version: "0.0.1",
name: "Issues",➤

source_url: "https://github.com/pragdave/issues",➤

deps: deps]
end

Then run mix deps.get.

To generate the documentation, just run

$ mix docs
Docs generated with success.
Open up docs/index.html in your browser to read them.

The first time you run this task, it will install ExDoc. That involves compiling
some C code, so you’ll need a development environment on your machine.

Open docs/index.html in your browser, then use the sidebar on the left to search
or drill down through your modules. Here’s what I see for the start of the
documentation for TableFormatter:

And that’s it. The full project is in the source download at project/5/issues.

Coding by Transforming Data
I wanted to show you how Elixir projects are written—the tools we use and
the processes we follow. I wanted to illustrate how lots of small functions can
transform data, how specifying that transformation acts as an outline for the
program, and how easy testing can be in Elixir.

report erratum • discuss

Coding by Transforming Data • 167

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

But mostly I wanted to show how enjoyable Elixir development is, and how
thinking about the world in terms of data and its transformation is a produc-
tive way to code. Look at our original design:

$ issues elixir-lang elixir

{ name,
project,

n }

github
json

internal
representation

sorted
data

subsetpretty table

parse fetch
from
GitHub

convert

sort�rst(n)table
format

Then have a look at the CLI.process function:

def process({user, project, count}) do
Issues.GithubIssues.fetch(user, project)
|> decode_response()
|> sort_into_ascending_order()
|> last(count)
|> print_table_for_columns(["number", "created_at", "title"])

end

This is a cool way to code. Next we’ll dig into some of the tooling that makes
using Elixir a joy.

Your Turn
➤ Exercise: OrganizingAProject-6

In the United States, the National Oceanic and Atmospheric Administration
provides hourly XML feeds of conditions at 1,800 locations.6 For example,
the feed for a small airport close to where I’m writing this is at
http://w1.weather.gov/xml/current_obs/KDTO.xml.

Write an application that fetches this data, parses it, and displays it in a
nice format.

(Hint: You might not have to download a library to handle XML parsing.)

6. http://w1.weather.gov/xml/current_obs

Chapter 13. Organizing a Project • 168

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-6
http://w1.weather.gov/xml/current_obs/KDTO.xml
http://w1.weather.gov/xml/current_obs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 14

In this chapter, you'll see:
• Debugging
• Testing
• Code exploration
• Server monitoring
• Source-code formatting

Tooling
You’d expect that a relatively new language would come with a fairly minimal
set of tools—after all, the development team will be having fun playing with
the language.

Not so with Elixir. Tooling was important from the start, and the core team has
spent a lot of time providing a world-class environment in which to develop code.

In this short chapter, we’ll look at some aspects of this.

This chapter is not the full list. We’ve already seen the ExDoc tool, which
creates beautiful documentation for your code. Later, when we look at OTP
applications, on page 282, we’ll experiment with the Elixir release manager, a
tool for managing releases while your application continues to run.

For now, let’s look at testing, code-exploration, and server-monitoring tools.

Debugging with IEx
You already know that IEx is the go-to utility to play with Elixir code. It also
has a secret and dark second life as a debugger. It isn’t fancy, but it lets you
get into a running program and examine the environment.

You enter the debugger when running Elixir code hits a breakpoint. There are
two ways of creating a breakpoint. One works by adding calls into the code
you want to debug. The other is initiated from inside IEx. We’ll look at both
using the following (buggy) code:

tooling/buggy/lib/buggy.ex
defmodule Buggy do

def parse_header(
<<
format::integer-16,
tracks::integer-16,

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tooling/buggy/lib/buggy.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

division::integer-16➤

>>
) do

IO.puts "format: #{format}"
IO.puts "tracks: #{tracks}"
IO.puts "division: #{decode(division)}"

end

def decode(<< 1::1, beats::15 >>) do
"♩ = #{beats}"

end

def decode(<< 0::1, fps::7, beats::8 >>) do
"#{-fps} fps, #{beats}/frame"

end
end

This code is supposed to decode the data part of a MIDI header frame. This
contains three 16-bit fields: the format, the number of tracks, and the time
division. This last field comes in one of two formats:

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 x x x x x x x x x x x x x x x

x = beats/quarter note

1 y y y y y y y z z z z z z z z

-y = SMPTE frame/s, z = beats/frame

�1

The parse_header/1 function splits the overall header into the three fields, and
the decode/1 function works out which type of time division we have.

Let’s run it, using a sample header I extracted from a MIDI file.

$ iex -S mix
iex> header = << 0, 1, 0, 8, 0, 120 >>
<<0, 1, 0, 8, 0, 120>>
iex> Buggy.parse_header header
format: 1
tracks: 8
** (FunctionClauseError) no function clause matching in Buggy.decode/1
iex>

Oh no! That was totally unexpected. It looks like we’re not passing the correct
value to decode. Let’s use the debugger to find out what’s going on.

Injecting Breakpoints Using IEx.pry
We can add a breakpoint to our source code using the pry function. For
example, to stop our code just before we call decode we could write this:

Chapter 14. Tooling • 170

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def parse_header(
<<

format::integer-16,
tracks::integer-16,

division::integer-16
>>

) do

require IEx; IEx.pry➤

IO.puts "format: #{format}"
IO.puts "tracks: #{tracks}"
IO.puts "division: #{decode(division)}"

end

(We need the require because pry is a macro.)

Let’s try the code now:

$ iex -S mix
iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
Break reached: Buggy.parse_header/1 (lib/buggy.ex:11)

9:
10: require IEx; IEx.pry➤

11: IO.puts "format: #{format}"

pry> binding
[division: 120, format: 1, tracks: 8]
iex> continue()
format: 1
tracks: 8
** (FunctionClauseError) no function clause matching in Buggy.decode/1

We reached the breakpoint, and IEx entered pry mode. It showed us the
function we were in as well as the source lines surrounding the breakpoint.

At this point, IEx is running in the context of this function, so a call to binding
shows the local variables. The value in the division function is 120, but that
isn’t matching either of the parameters to decode.

Aha! decode is expecting a binary, not an integer. Let’s fix our code:

def parse_header(
<<

format::integer-16,
tracks::integer-16,

division::bits-16➤

>>
) do
...

The pry call is still in there, so let’s recompile and try again:

report erratum • discuss

Debugging with IEx • 171

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> r Buggy
{:reloaded, Buggy, [Buggy]}
iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
Break reached: Buggy.parse_header/1 (lib/buggy.ex:12)

10:) do
11:
12: require IEx; IEx.pry
13: IO.puts "format: #{format}"
14: IO.puts "tracks: #{tracks}"

pry> binding
[division: <<0, 120>>, format: 1, tracks: 8]
pry> continue
format: 1
tracks: 8
division: 0 fps, 120/frame
:ok

Now the division is a binary, and when we continue the code runs and outputs
the header fields. Except…it’s parsing the time division as if it were the SMPTE
version, and not the beats/quarter note version.

Setting Breakpoints with Break
The second way to create a breakpoint doesn’t involve any code changes.
Instead, you can use the break! command inside IEx to add a breakpoint on
any public function. Let’s remove the call to pry and run the code again. Inside
IEx we’ll add a breakpoint on the decode function:

iex> require IEx
IEx
iex> break! Buggy.decode/1
1
iex> breaks

ID Module.function/arity Pending stops
---- ----------------------- ---------------
1 Buggy.decode/1 1

iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
format: 1
tracks: 8
Break reached: Buggy.decode/1 (lib/buggy.ex:21)

19: end
20:
21: def decode(<< 0::1, fps::7, beats::8 >>) do
22: "#{-fps} fps, #{beats}/frame"
23: end

pry> binding
[division: <<0, 120>>, format: 1, tracks: 8]

Chapter 14. Tooling • 172

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We hit the breakpoint, and we are indeed matching the wrong version of the
decode function when we pass it 0000000001111000. Ah, that’s because I’m dis-
criminating based on the value of the top bit, and I got it the wrong way
around: the SMPTE version should be

def decode(<< 1::1, fps::7, beats::8 >>) do

and the beats version should be

def decode(<< 0::1, beats::15 >>) do

There’s lots more functionality in the debugger. You can start by getting help
for IEx.break/4.

Does This Seem a Little Artificial?
I have a confession to make. The only time I use the Elixir breakpoint facility
is when I work on this section of the book. If I have to add code to the source
to break in the middle of a function, then I can just raise an exception there
instead to get the information I need. And the fact that I can only break at
public functions from inside IEx means that I can’t get the kind of granularity
I need to diagnose issues, because 90% of my functions are private.

However, I’m an old curmudgeon—my favorite editor is a card punch. Don’t
let my lack of enthusiasm stop you from trying the debugger.

Testing
We already used the ExUnit framework to write tests for our Issues tracker
app. But that chapter only scratched the surface of Elixir testing. Let’s dig
deeper.

Testing the Comments
When I document my functions, I like to include examples of the function
being used—comments saying things such as, “Feed it these arguments, and
you’ll get this result.” In the Elixir world, a common way to do this is to show
the function being used in an IEx session.

Let’s look at an example from our Issues app. The TableFormatter formatter
module defines a number of self-contained functions that we can document.

project/5/issues/lib/issues/table_formatter.ex
defmodule Issues.TableFormatter do

import Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

@doc """

report erratum • discuss

Testing • 173

http://media.pragprog.com/titles/elixir16/code/project/5/issues/lib/issues/table_formatter.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Takes a list of row data, where each row is a Map, and a list of
headers. Prints a table to STDOUT of the data from each row
identified by each header. That is, each header identifies a column,
and those columns are extracted and printed from the rows.
We calculate the width of each column to fit the longest element
in that column.
"""
def print_table_for_columns(rows, headers) do

with data_by_columns = split_into_columns(rows, headers),
column_widths = widths_of(data_by_columns),
format = format_for(column_widths)

do
puts_one_line_in_columns(headers, format)
IO.puts(separator(column_widths))
puts_in_columns(data_by_columns, format)

end
end

@doc """
Given a list of rows, where each row contains a keyed list
of columns, return a list containing lists of the data in
each column. The `headers` parameter contains the
list of columns to extract

Example

iex> list = [Enum.into([{"a", "1"},{"b", "2"},{"c", "3"}], %{}),
...> Enum.into([{"a", "4"},{"b", "5"},{"c", "6"}], %{})]
iex> Issues.TableFormatter.split_into_columns(list, ["a", "b", "c"])
[["1", "4"], ["2", "5"], ["3", "6"]]

"""
def split_into_columns(rows, headers) do

for header <- headers do
for row <- rows, do: printable(row[header])

end
end

@doc """
Return a binary (string) version of our parameter.
Examples

iex> Issues.TableFormatter.printable("a")
"a"
iex> Issues.TableFormatter.printable(99)
"99"

"""
def printable(str) when is_binary(str), do: str
def printable(str), do: to_string(str)

@doc """
Given a list containing sublists, where each sublist contains the data for
a column, return a list containing the maximum width of each column.

Chapter 14. Tooling • 174

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Example
iex> data = [["cat", "wombat", "elk"], ["mongoose", "ant", "gnu"]]
iex> Issues.TableFormatter.widths_of(data)
[6, 8]

"""
def widths_of(columns) do

for column <- columns, do: column |> map(&String.length/1) |> max
end

@doc """
Return a format string that hard-codes the widths of a set of columns.
We put `" | "` between each column.

Example
iex> widths = [5,6,99]
iex> Issues.TableFormatter.format_for(widths)
"~-5s | ~-6s | ~-99s~n"

"""
def format_for(column_widths) do

map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"
end

@doc """
Generate the line that goes below the column headings. It is a string of
hyphens, with + signs where the vertical bar between the columns goes.

Example
iex> widths = [5,6,9]
iex> Issues.TableFormatter.separator(widths)
"------+--------+----------"

"""
def separator(column_widths) do

map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)
end

@doc """
Given a list containing rows of data, a list containing the header selectors,
and a format string, write the extracted data under control of the format string.
"""
def puts_in_columns(data_by_columns, format) do

data_by_columns
|> List.zip
|> map(&Tuple.to_list/1)
|> each(&puts_one_line_in_columns(&1, format))

end

def puts_one_line_in_columns(fields, format) do
:io.format(format, fields)

end
end

Note how some of the documentation contains sample IEx sessions. I like
doing this. It helps people who come along later understand how to use my

report erratum • discuss

Testing • 175

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

code. But, as importantly, it lets me understand what my code will feel like
to use. I typically write these sample sessions before I start on the code,
changing stuff around until the API feels right.

But the problem with comments is that they just don’t get maintained. The
code changes, the comment gets stale, and it becomes useless. Fortunately,
ExUnit has doctest, a tool that extracts the iex sessions from your code’s @doc
strings, runs it, and checks that the output agrees with the comment.

To invoke it, simply add one or more

doctest «ModuleName»
lines to your test files. You can add them to existing test files for a module
(such as table_formatter_test.exs) or create a new test file just for them. That’s
what we’ll do here. Let’s create a new test file, test/doc_test.exs, containing this:

project/5/issues/test/doc_test.exs
defmodule DocTest do

use ExUnit.Case
doctest Issues.TableFormatter➤

end

We can now run it:

$ mix test test/doc_test.exs
......
Finished in 0.00 seconds
5 doctests, 0 failures

And, of course, these tests are integrated into the overall test suite:

$ mix test
..............

Finished in 0.1 seconds
5 doctests, 9 tests, 0 failures

Let’s force an error to see what happens:

@doc """
Return a binary (string) version of our parameter.

Examples

iex> Issues.TableFormatter.printable("a")
"a"
iex> Issues.TableFormatter.printable(99)
"99.0"

"""

def printable(str) when is_binary(str), do: str
def printable(str), do: to_string(str)

Chapter 14. Tooling • 176

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/project/5/issues/test/doc_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

And run the tests again:

$ mix test test/doc_test.exs
.........

1) test doc at Issues.TableFormatter.printable/1 (3) (DocTest)
Doctest failed
code: " Issues.TableFormatter.printable(99) should equal \"99.0\""
lhs: "\"99\""
stacktrace:

lib/issues/table_formatter.ex:52: Issues.TableFormatter (module)
6 tests, 1 failures

Structuring Tests
You’ll often find yourself wanting to group your tests at a finer level than per
module. For example, you might have multiple tests for a particular function,
or multiple functions that work on the same test data. ExUnit has you covered.

Let’s test this simple module:

tooling/pbt/lib/stats.ex
defmodule Stats do

def sum(vals), do: vals |> Enum.reduce(0, &+/2)
def count(vals), do: vals |> length
def average(vals), do: sum(vals) / count(vals)

end

Our tests might look something like this:

tooling/pbt/test/describe.exs
defmodule TestStats do

use ExUnit.Case

test "calculates sum" do
list = [1, 3, 5, 7, 9]
assert Stats.sum(list) == 25

end

test "calculates count" do
list = [1, 3, 5, 7, 9]
assert Stats.count(list) == 5

end

test "calculates average" do
list = [1, 3, 5, 7, 9]
assert Stats.average(list) == 5

end
end

There are a couple of issues here. First, these tests only pass in a list of
integers. Presumably we’d want to test with floats, too. So let’s use the describe
feature of ExUnit to document that these are the integer versions of the tests:

report erratum • discuss

Testing • 177

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/lib/stats.ex
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

tooling/pbt/test/describe.exs
defmodule TestStats0 do

use ExUnit.Case

describe "Stats on lists of ints" do
test "calculates sum" do
list = [1, 3, 5, 7, 9]
assert Stats.sum(list) == 25

end

test "calculates count" do
list = [1, 3, 5, 7, 9]
assert Stats.count(list) == 5

end

test "calculates average" do
list = [1, 3, 5, 7, 9]
assert Stats.average(list) == 5

end
end

end

If any of these fail, the message would include the description and test name:

test Stats on lists of ints calculates sum (TestStats0)
test/describe.exs:12
Assertion with == failed
...

A second issue with our tests is that we’re duplicating the test data in each
function. In this particular case this is arguably not a major problem. There
are times, however, where this data is complicated to create. So let’s use the
setup feature to move this code into a single place. While we’re at it, we’ll also
put the expected answers into the setup. This means that if we decide to
change the test data in the future, we’ll find it all in one place.

tooling/pbt/test/describe.exs
defmodule TestStats1 do

use ExUnit.Case

describe "Stats on lists of ints" do

setup do
[list: [1, 3, 5, 7, 9, 11],

sum: 36,
count: 6

]
end

test "calculates sum", fixture do
assert Stats.sum(fixture.list) == fixture.sum

end

Chapter 14. Tooling • 178

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

test "calculates count", fixture do
assert Stats.count(fixture.list) == fixture.count

end

test "calculates average", fixture do
assert Stats.average(fixture.list) == fixture.sum / fixture.count

end
end

end

The setup function is invoked automatically before each test is run. (There’s
also a setup_all function that is invoked just once for the test run.) The setup
function returns a keyword list of named test data. In testing circles, this
data, which is used to drive tests, is called a fixture.

This data is passed to our tests as a second parameter, following the test
name. In my tests, I’ve called this parameter fixture. I then access the individ-
ual fields using the fixture.list syntax.

In the code here I passed a block to setup. You can also pass the name of a
function (as an atom).

Inside the setup code you can define callbacks using on_exit. These will be invoked
at the end of the test. They can be used to undo changes made by the test.

There’s a lot of depth in ExUnit. I’d recommend spending a little time in the
ExUnit docs.1

Property-Based Testing
When you use assertions, you work out ahead of time the result you expect
your function to return. This is good, but it also has some limitations. In
particular, any assumptions you made while writing the original code are
likely to find their way into the tests, too.

A different approach is to consider the overall properties of the function you’re
testing. For example, if your function converts a string to uppercase, then
you can predict that, whatever string you feed it,

• the length of the output will be the same as the length of the input, and
• any lowercase characters in the input will have been replaced by their

uppercase counterpart.

These are intrinsic properties of the function. And we can test them statisti-
cally by simply injecting a (large) number of different strings and verifying
the results honor the properties. If all the tests pass, we haven’t proved the

1. http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html

report erratum • discuss

Testing • 179

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

function is correct (although we have a lot of confidence it should be). But,
more importantly, if any of the tests fail, we’ve found a boundary condition
our function doesn’t handle. And property-based testing is surprisingly good
at finding these errors. Let’s look again at our previous example:

tooling/pbt/lib/stats.ex
defmodule Stats do

def sum(vals), do: vals |> Enum.reduce(0, &+/2)
def count(vals), do: vals |> length
def average(vals), do: sum(vals) / count(vals)

end

Here are some simple properties we could test:

• The sum of a list containing a single value should be that value.
• The count function should never return a negative number.
• If we multiply the results returned by count and average, it should equal

the result returned by sum (allowing for a little rounding).

To test the properties, the framework needs to generate large numbers of
sample values of the correct type. For the first test, for example, we need a
bunch of numeric values.

That’s where the property-testing libraries come in. There are a number of
property-based testing libraries for Elixir (including one I wrote, called Quixir).
But here we’ll be using a library called StreamData.2 As José Valim is one of
the authors, I suspect it may well make its way into core Elixir one day.

I could write something like this:

check all number <- real() do
...

end

There are two pieces of magic here. The first is the real function. This is a gener-
ator, which will return real numbers. This is invoked by checkall. You might think
from its name that this will try all real numbers (which would take some time),
but it instead just iterates a given number of times (100 by default).

Let’s code this. First, add StreamData to our list of dependencies:

tooling/pbt/mix.exs
defp deps do

[
{ :stream_data, ">= 0.0.0" },

]
end

2. https://github.com/whatyouhide/stream_data

Chapter 14. Tooling • 180

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/lib/stats.ex
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/mix.exs
https://github.com/whatyouhide/stream_data
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Now we can write the property tests. Here’s the first:

tooling/pbt/test/stats_property_test.exs
defmodule StatsPropertyTest do

use ExUnit.Case
use ExUnitProperties

describe "Stats on lists of ints" do
property "single element lists are their own sum" do
check all number <- integer() do

assert Stats.sum([number]) == number
end

end
end

end

You’ll see this looks a lot like a regular test. We have to include use ExCheck at
the top to include the property test framework.

The actual test is in the property block. It has the check all block we saw earlier.
Inside this we have a test: assert Stats.sum([number]) == number.

Let’s run it:

$ mix test test/stats_property_test.exs
.
..............

Finished in 0.1 seconds
1 property, 0 failures

Let’s break the test, just to see what a failure looks like:

check all number <- real do
assert Stats.sum([number]) == number + 1

end

1) property Stats on lists of ints single-element lists are
their own sum (StatsPropertyTest)
test/stats_property_test.exs:17
Failed with generated values (after 0 successful run(s)):

number <- integer()
#=> 0

Assertion with == failed
code: assert Stats.sum([number]) == number + 1
left: 0
right: 1

We failed, and the value of number at the time was zero.

Let’s fix the test, and add tests for the other two properties.

report erratum • discuss

Testing • 181

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/stats_property_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

tooling/pbt/test/stats_property_test.exs
property "count not negative" do

check all l <- list_of(integer()) do
assert Stats.count(l) >= 0

end
end

property "single element lists are their own sum" do
check all number <- integer() do

assert Stats.sum([number]) == number
end

end

property "sum equals average times count" do
check all l <- list_of(integer()) do

assert_in_delta(
Stats.sum(l),
Stats.count(l)*Stats.average(l),
1.0e-6

)
end

end

The two new tests use a different generator: list(int) generates a number of
lists, each containing zero or more ints.

Running this code is surprising—it fails!

$ mix test test/stats_property_test.exs
....

1) property Stats on lists of ints sum equals average times
count (StatsPropertyTest)
test/stats_property_test.exs:27
** (ExUnitProperties.Error) failed with generated values
(after 40 successful run(s)):

l <- list_of(integer())➤

#=> []➤

** (ArithmeticError) bad argument in arithmetic expression➤

code: check all l <- list_of(integer()) do
. . .

Finished in 0.1 seconds
5 properties, 1 failure

Randomized with seed 947482

The exception shows we failed with an Arithmeticerror, and the value that caused
the failure was l = [], the empty list. That’s because we were trying to find the
average of an empty list. This means our code will be dividing the sum (0) by
the list size (0), and dividing by zero is an error.

Chapter 14. Tooling • 182

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/stats_property_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This is cool. The property tests explored the range of possible input values,
and found one that causes our code to fail.

Arguably, this is a bug in our Stats module. But let’s treat it instead as a
boundary condition that the tests should avoid. We can do this in two ways.

First, we can tell the property test to skip generated values that fail to meet
a condition. We do this with the nonempty function:

tooling/pbt/test/stats_property_test.exs
property "sum equals average times count (nonempty)" do

check all l <- list_of(integer()) |> nonempty do
assert_in_delta(
Stats.sum(l),
Stats.count(l)*Stats.average(l),
1.0e-6

)
end

end

Now, whenever the generator returns an empty list, the nonempty function will
filter it out. This is just one example of StreamData filters. A number are
predefined, and you can also write your own.

A second approach is to prevent the generator from creating empty lists in
the first place. This uses the min_length option:

tooling/pbt/test/stats_property_test.exs
property "sum equals average times count (min_length)" do

check all l <- list_of(integer(), min_length: 1) do
assert_in_delta(
Stats.sum(l),
Stats.count(l)*Stats.average(l),
1.0e-6

)
end

end

Digging Deeper

In case you’re interested in exploring property-based testing, the documenta-
tion for ExUnitProperties has some examples and references.3

The StreamData module is designed to be used on its own—it’s not just for
testing. If you find yourself needing to generate streams of values that meet
some criteria, it might be your library of choice.

3. https://hexdocs.pm/stream_data/ExUnitProperties.html

report erratum • discuss

Testing • 183

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/stats_property_test.exs
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/stats_property_test.exs
https://hexdocs.pm/stream_data/ExUnitProperties.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Test Coverage
Some people believe that if there are any lines of application code that haven’t
been exercised by a test, the code is incomplete. (I’m not one of them.) These
folks use test coverage tools to check for untested code.

Here we’ll use excoveralls to see where to add tests for the Issues app.4

(Another good coverage tool is coverex.)5

All of the work to add the tool to our project takes place in mix.exs.

First, we add the dependency:

tooling/issues/mix.exs
defp deps do

[
{:httpoison, "~> 0.9"},
{:poison, "~> 2.2"},
{:ex_doc, "~> 0.12"},
{:earmark, "~> 1.0", override: true},
{:excoveralls, "~> 0.5.5", only: :test}➤

]
end

Then, in the project section, we integrate the various coveralls commands
into mix, and force them to run in the test environment:

tooling/issues/mix.exs
def project do

[
app: :issues,
version: "0.0.1",
name: "Issues",
source_url: "https://github.com/pragdave/issues",
escript: escript_config(),
build_embedded: Mix.env == :prod,
start_permanent: Mix.env == :prod,
test_coverage: [tool: ExCoveralls],➤

preferred_cli_env: [➤

"coveralls": :test,➤

"coveralls.detail": :test,➤

"coveralls.post": :test,➤

"coveralls.html": :test➤

],➤

deps: deps()
]

end

4. https://github.com/parroty/excoveralls
5. https://github.com/alfert/coverex

Chapter 14. Tooling • 184

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tooling/issues/mix.exs
http://media.pragprog.com/titles/elixir16/code/tooling/issues/mix.exs
https://github.com/parroty/excoveralls
https://github.com/alfert/coverex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

After a quick mix deps.get, you can run your first coverage report:

$ mix coveralls
.............

Finished in 0.1 seconds
5 doctests, 8 tests, 0 failures

Randomized with seed 5441

COV FILE LINES RELEVANT MISSED

0.0% lib/issues.ex 5 0 0
46.7% lib/issues/cli.ex 73 15 8
0.0% lib/issues/github_issues.ex 46 6 6

100.0% lib/issues/table_formatter.ex 109 15 0
[TOTAL] 61.1%

It runs the tests first, and then reports on the files in our application.

We have no tests for issues.ex. As this is basically a boilerplate no-op, that’s not
surprising. We wrote some tests for cli.ex, but could do better. The github_issues.ex
file is not being tested. But, saving the best for last, we have 100% coverage in
the table formatter (because we used it as an example of doc testing).

excoveralls can produce detailed reports to the console (mix coveralls.detail) and
as an HTML file (mix coveralls.html). The latter generates the file cover/excoveralls.html,
as shown in the following figure.

report erratum • discuss

Testing • 185

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Finally, excoveralls works with a number of continuous integration systems.
See its GitHub page for details.

Code Dependencies
The mix tool is smart when it compiles your project. It analyzes the dependen-
cies between your source files, and only recompiles a file when it has changed
or a file it depends on has changed. As a developer, you can also access this
dependency information, gaining valuable insights into your code. You do
this with the mix xref commands.

mix xref unreachable
List functions that are unknown at the time they are called.

mix xref warnings
List warnings associated with dependencies (for example, calls to unknown
functions).

mix xref callers Mod | Mod.func | Mod.func/arity
List the callers to a module or function:

$ mix xref callers Logger
mix xref callers Logger
web/controllers/page_controller.ex:1: Logger.bare_log/3
web/controllers/page_controller.ex:1: Logger.debug/1
lib/webapp/endpoint.ex:1: Logger.bare_log/3
lib/webapp/endpoint.ex:1: Logger.error/1

mix xref graph
Show the dependency tree for the application:

$ mix xref graph
lib/webapp.ex
├── lib/webapp/endpoint.ex
│ ├── lib/webapp.ex (compile)
│ └── web/router.ex (compile)
│ ├── lib/webapp.ex (compile)
│ └── web/web.ex (compile)
└── lib/webapp/repo.ex

You can produce a circles-and-arrows picture of dependencies using dot.6

$ mix xref graph --format dot
$ dot -Grankdir=LR -Epenwidth=2 -Ecolor=#a0a0a0 \

-Tpng xref_graph.dot -o xref_graph.png

6. http://www.graphviz.org/

Chapter 14. Tooling • 186

report erratum • discuss

http://www.graphviz.org/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This produces something like this:

Server Monitoring
As you might expect from a platform that has been running demanding and
critical applications for 20 years, Erlang has great server-monitoring tools.

One of the easiest to use is already baked in. Inside IEx, run

iex> :observer.start()

Use this to get insight into…

• Basic system information:

report erratum • discuss

Server Monitoring • 187

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• Dynamic charts of load:

• Information and contents of Erlang ETS tables:

• Running processes:

Chapter 14. Tooling • 188

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• Running applications:

• Memory allocation:

report erratum • discuss

Server Monitoring • 189

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• And tracing of function calls, messages, and events:

For application-level monitoring, you might want to look at Elixometer from
Pinterest.7

Source-Code Formatting
This is the section where I get into trouble.

The Elixir core team wanted to standardize the format of source code that
was submitted to them for inclusion in the various Elixir core projects. Rather
than beat people up and reject pull requests, they made it easy for submitters
by including a source-code formatting tool in Elixir 1.6. This tool is pretty
smart—it knows not just the syntax of Elixir but also the parse tree, meaning
that it will often move things between lines, drop commas, add parentheses,
and so on.

This magic is done using the mix format command. It can format single files,
directory trees, and whole projects (see mix help format for information). This
formatting replaces the files it touches, so you might want to make sure you’re
checked in before running it.

Let’s have a look at some before-and-after formatting:

If we feed it code that looks like a dog’s dinner:

def no_vowels string
do

string |>
String.replace(~r/[aeiou]/, "*")

end

7. https://github.com/pinterest/elixometer

Chapter 14. Tooling • 190

report erratum • discuss

https://github.com/pinterest/elixometer
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def separator(column_widths) do
map_join(column_widths, "-+-", fn width ->

List.duplicate("-", width)
end)

end

the formatter tidies it nicely:

def no_vowels(string) do
string
|> String.replace(~r/[aeiou]/, "*")

end

def separator(column_widths) do
map_join(column_widths, "-+-", fn width ->

List.duplicate("-", width)
end)

end

It is also pretty smart about multiline constructs:

@names [
Doc, Grumpy, Happy,

Sleepy, Bashful, Sneezy,
Dopey

]

This produces:

@names [
Doc,
Grumpy,
Happy,
Sleepy,
Bashful,
Sneezy,
Dopey

]

Here, because the original split onto a new line, the formatted result was
normalized into one element per line.

There’s lots to like about the formatter. But I personally don’t use it, because
it destroys some elements of layout I think are important.

For example, I like to line things up vertically. I find this much, much easier
to read and to maintain. Most editors have support for this:

options = %{
style: "light",
background: "green"

}

report erratum • discuss

Source-Code Formatting • 191

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

and:

name = "Alphabet"
url = "https://abc.xyz"
entry_count = 10

Unfortunately, the Elixir formatter goes to some trouble to remove that extra
space, producing:

options = %{
style: "light",
background: "green"

}

name = "Alphabet"
url = "https://abc.xyz"
entry_count = 10

Then there’s the contentious trailing comma.

When I list things out, I put a comma after each item and put each item on
a new line. This makes it easier to move things around, add new items, sort
the list, and so on. Each line is just like the other: the first and last lines are
not special.

plugins = [
Format,
Index,
Print,

]

The formatter thinks this is silly, and removes the comma.

plugins = [
Format,
Index,
Print

]

And finally, there’s the trailing comment. I rarely use comments inside a block
of code. When I do, and if it is short, I add it to the end of the line:

def format(template, # a binary in eex format
bindings, # the bindings to use
options) do # :verbose | :narrow
...

end

I know this is a bad example, but even so the formatter makes some unfortu-
nate decisions:

Chapter 14. Tooling • 192

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

a binary in eex format
def format(

template,
the bindings to use
bindings,
:verbose | :narrow
options

) do
...

end

The upshot? If you like what it does, or if you’re submitting code to a project
that requires it, use the formatter.

Inevitably, There’s More
Elixir is lucky when it comes to tooling, both because it inherits a wealth of
tools from Erlang and because the Elixir community values great tools and
develops them to fill any gaps. Keep up with the tools people use, and you’ll
find yourself developing faster, and with more confidence.

Now let’s look at concurrent programming, a key strength of Elixir.

report erratum • discuss

Inevitably, There’s More • 193

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Part II

Concurrent Programming

You want to write concurrent programs. That’s probably why you’re reading this book.

Let’s look at Elixir’s actor-based concurrency model. Then we’ll dig into OTP, the Erlang
management architecture that helps you create applications that are highly scalable
and very reliable.

CHAPTER 15

Working with Multiple Processes
One of Elixir’s key features is the idea of packaging code into small chunks
that can be run independently and concurrently.

If you’ve come from a conventional programming language, this may worry
you. Concurrent programming is “known” to be difficult, and there’s a perfor-
mance penalty to pay when you create lots of processes.

Elixir doesn’t have these issues, thanks to the architecture of the Erlang VM
on which it runs.

Elixir uses the actor model of concurrency. An actor is an independent process
that shares nothing with any other process. You can spawn new processes,
send them messages, and receive messages back. And that’s it (apart from
some details about error handling and monitoring, which we cover later).

In the past, you may have had to use threads or operating system processes
to achieve concurrency. Each time, you probably felt you were opening Pan-
dora’s box—there was so much that could go wrong. But that worry just
evaporates in Elixir. In fact, Elixir developers are so comfortable creating new
processes, they’ll often do it at times when you’d have created an object in a
language such as Java.

One more thing—when we talk about processes in Elixir, we are not talking
about native operating-system processes. These are too slow and bulky.
Instead, Elixir uses process support in Erlang. These processes will run across
all your CPUs (just like native processes), but they have very little overhead.
As we’ll cover a bit later, it’s very easy to create hundreds of thousands of
Elixir processes on even a modest computer.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

A Simple Process
Here’s a module that defines a function we’d like to run as a separate process:

spawn/spawn-basic.ex
defmodule SpawnBasic do

def greet do
IO.puts "Hello"

end
end

Yup, that’s it. There’s nothing special—it’s just regular code.

Let’s fire up IEx and play:

iex> c("spawn-basic.ex")
[SpawnBasic]

First let’s call it as a regular function:

iex> SpawnBasic.greet
Hello
:ok

Now let’s run it in a separate process:

iex> spawn(SpawnBasic, :greet, [])
Hello
#PID<0.42.0>

The spawn function kicks off a new process. It comes in many forms, but the
two simplest ones let you run an anonymous function and run a named
function in a module, passing a list of arguments. (We used the latter here.)

The spawn returns a process identifier, normally called a PID. This uniquely
identifies the process it creates. (This identifier could be unique among all
processes in the world, but here it’s just unique in our application.)

When we call spawn, it creates a new process to run the code we specify. We
don’t know exactly when it will execute—only that it is eligible to run.

In this example, we can see that our function ran and output “Hello” prior to
IEx reporting the PID returned by spawn. But you can’t rely on this. Instead
you’ll use messages to synchronize your processes’ activity.

Sending Messages Between Processes
Let’s rewrite our example to use messages. The top level will send greet a
message containing a string, and the greet function will respond with a greeting
containing that message.

Chapter 15. Working with Multiple Processes • 198

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/spawn-basic.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In Elixir we send a message using the send function. It takes a PID and the
message to send (an Elixir value, which we also call a term) on the right. You
can send anything you want, but most Elixir developers seem to use atoms
and tuples.

We wait for messages using receive. In a way, this acts the same as case, with
the message body as the parameter. Inside the block associated with the
receive call, you can specify any number of patterns and associated actions.
Just as with case, the action associated with the first pattern that matches
the function is run.

Here’s the updated version of our greet function.

spawn/spawn1.exs
defmodule Spawn1 do

def greet do
receive do
{sender, msg} ->

send sender, { :ok, "Hello, #{msg}" }
end

end
end

here's a client
pid = spawn(Spawn1, :greet, [])
send pid, {self(), "World!"}

receive do
{:ok, message} ->

IO.puts message
end

The function uses receive to wait for a message, and then matches the message
in the block. In this case, the only pattern is a two-element tuple, where the
first element is the original sender’s PID and the second is the message. In
the corresponding action, we use send sender, ... to send a formatted string back
to the original message sender. We package that string into a tuple, with :ok
as its first element.

Outside the module, we call spawn to create a process, and send it a tuple:

send pid, { self, "World!" }

The function self returns its caller’s PID. Here we use it to pass our PID to the
greet function so it will know where to send the response.

We then wait for a response. Notice that we do a pattern match on {:ok,message},
extracting the second element of the tuple, which contains the actual text.

report erratum • discuss

A Simple Process • 199

http://media.pragprog.com/titles/elixir16/code/spawn/spawn1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We can run this in IEx:

iex> c("spawn1.exs")
Hello, World!
[Spawn1]

Very cool. The text was sent, and greet responded with the full greeting.

Handling Multiple Messages
Let’s try sending a second message.

spawn/spawn2.exs
defmodule Spawn2 do

def greet do
receive do
{sender, msg} ->

send sender, { :ok, "Hello, #{msg}" }
end

end
end

here's a client
pid = spawn(Spawn2, :greet, [])

send pid, {self(), "World!"}

receive do
{:ok, message} ->

IO.puts message
end

send pid, {self(), "Kermit!"}
receive do

{:ok, message} ->
IO.puts message

end

Run it in IEx:

iex> c("spawn2.exs")
Hello, World!
.... just sits there

The first message is sent back, but the second is nowhere to be seen. What’s
worse, IEx just hangs, and we have to use ^C (the Control-C key sequence) to
get out of it.

That’s because our greet function handles only a single message. Once it has
processed the receive, it exits. As a result, the second message we send it is
never processed. The second receive at the top level then just hangs, waiting
for a response that will never come.

Chapter 15. Working with Multiple Processes • 200

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/spawn2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Let’s at least fix the hanging part. We can tell receive that we want to time out
if a response is not received in so many milliseconds. This uses a pseudo-
pattern called after.

spawn/spawn3.exs
defmodule Spawn3 do

def greet do
receive do
{sender, msg} ->

send sender, { :ok, "Hello, #{msg}" }
end

end
end

here's a client
pid = spawn(Spawn3, :greet, [])

send pid, {self(), "World!"}
receive do

{:ok, message} ->
IO.puts message

end

send pid, {self(), "Kermit!"}
receive do

{:ok, message} ->
IO.puts message

after 500 ->➤

IO.puts "The greeter has gone away"➤

end

iex> c("spawn3.exs")
Hello, World!
... short pause ...
The greeter has gone away
[Spawn3]

But how would we make our greet function handle multiple messages? Our
natural reaction is to make it loop, doing a receive on each iteration. Elixir
doesn’t have loops, but it does have recursion.

spawn/spawn4.exs
defmodule Spawn4 do

def greet do
receive do
{sender, msg} ->

send sender, { :ok, "Hello, #{msg}" }
greet()➤

end
end

end

report erratum • discuss

A Simple Process • 201

http://media.pragprog.com/titles/elixir16/code/spawn/spawn3.exs
http://media.pragprog.com/titles/elixir16/code/spawn/spawn4.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

here's a client
pid = spawn(Spawn4, :greet, [])
send pid, {self(), "World!"}
receive do

{:ok, message} ->
IO.puts message

end

send pid, {self(), "Kermit!"}
receive do

{:ok, message} ->
IO.puts message

after 500 ->
IO.puts "The greeter has gone away"

end

Run this, and both messages are processed:

iex> c("spawn4.exs")
Hello, World!
Hello, Kermit!
[Spawn4]

Recursion, Looping, and the Stack
The greet function might have worried you a little. Every time it receives a
message, it ends up calling itself. In many languages, that adds a new frame
to the stack. After a large number of messages, you might run out of memory.

This doesn’t happen in Elixir, as it implements tail-call optimization. If the
last thing a function does is call itself, there’s no need to make the call.
Instead, the runtime simply jumps back to the start of the function. If the
recursive call has arguments, then these replace the original parameters. But
beware—the recursive call must be the very last thing executed. For example,
the following code is not tail recursive:

def factorial(0), do: 1
def factorial(n), do: n * factorial(n-1)

While the recursive call is physically the last thing in the function, it is not
the last thing executed. The function has to multiply the value it returns by n.

To make it tail recursive, we need to move the multiplication into the recursive
call, and this means adding an accumulator:

spawn/fact_tr.exs
defmodule TailRecursive do

def factorial(n), do: _fact(n, 1)
defp _fact(0, acc), do: acc
defp _fact(n, acc), do: _fact(n-1, acc*n)

end

Chapter 15. Working with Multiple Processes • 202

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/fact_tr.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Process Overhead
At the start of the chapter, I somewhat cavalierly said Elixir processes were
very low overhead. Now it’s time to back that up. Let’s write some code that
creates n processes. The first will send a number to the second. It will incre-
ment that number and pass it to the third. This will continue until we get to
the last process, which will pass the number back to the top level.

spawn/chain.exs
defmodule Chain doLine 1

def counter(next_pid) do-

receive do-

n ->-

send next_pid, n + 15

end-

end-

-

def create_processes(n) do-

code_to_run = fn (_,send_to) ->10

spawn(Chain, :counter, [send_to])-

end-

-

last = Enum.reduce(1..n, self(), code_to_run)-

15

send(last, 0) # start the count by sending a zero to the last process-

-

receive do # and wait for the result to come back to us-

final_answer when is_integer(final_answer) ->-

"Result is #{inspect(final_answer)}"20

end-

end-

-

def run(n) do-

:timer.tc(Chain, :create_processes, [n])25

|> IO.inspect-

end-

end-

The counter function on line 2 is the code that will be run in separate processes.
It is passed the PID of the next process in the chain. When it receives a
number, it increments it and sends it on to that next process.

The create_processes function is probably the densest piece of Elixir we’ve
encountered so far. Let’s break it down.

It is passed the number of processes to create. Each process has to be passed
the PID of the previous process so that it knows who to send the updated
number to.

report erratum • discuss

Process Overhead • 203

http://media.pragprog.com/titles/elixir16/code/spawn/chain.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The code that creates each process is defined in a one-line anonymous func-
tion, which is assigned to the variable code_to_run. The function takes two
parameters because we’re passing it to Enum.reduce on line 14.

The reduce call will iterate over the range 1..n. Each time around, it will pass
an accumulator as the second parameter to its function. We set the initial
value of that accumulator to self, our PID.

In the function, we spawn a new process that runs the counter function, using
the third parameter of spawn to pass in the accumulator’s current value (ini-
tially self). The value spawn returns is the PID of the newly created process,
which becomes the accumulator’s value for the next iteration.

Putting it another way, each time we spawn a new process, we pass it the
previous process’s PID in the send_to parameter.

The value that the reduce function returns is the accumulator’s final value,
which is the PID of the last process created.

On the next line we set the ball rolling by passing 0 to the last process. The
process increments the value and so passes 1 to the second-to-last process.
This goes on until the very first process we created passes the result back to
us. We use the receive block to capture this, and format the result into a nice
message.

Our receive block contains a new feature. We’ve already seen how guard
clauses can constrain pattern matching and function calling. The same guard
clauses can be used to qualify the pattern in a receive block.

Why do we need this, though? It turns out there’s a bug in some versions of
Elixir.1 When you compile and run a program using iex -S mix, a residual mes-
sage is left lying around from the compilation process (it records a process’s
termination). We ignore that message by telling the receive clause that we’re
interested only in simple integers.

The run function starts the whole thing off. It uses a built-in Erlang library,
tc, which can time a function’s execution. We pass it the module, name, and
parameters, and it responds with a tuple. The first element is the execution
time in microseconds and the second is the result the function returns.

We’ll run this code from the command line rather than from IEx. (You’ll see
why in a second.) These results are on my 2011 MacBook Air (2.13 GHz Core
2 Duo and 4 GB of RAM).

1. https://github.com/elixir-lang/elixir/issues/1050

Chapter 15. Working with Multiple Processes • 204

report erratum • discuss

https://github.com/elixir-lang/elixir/issues/1050
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

$ elixir -r chain.exs -e "Chain.run(10)"
{4015, "Result is 10"}

We asked it to run 10 processes, and it came back in 4 ms. The answer looks
correct. Let’s try 100 processes.

$ elixir -r chain.exs -e "Chain.run(100)"
{4562, "Result is 100"}

Only a small increase in the time. There’s probably some startup latency on
the first process creation. Onward! Let’s try 1,000.

$ elixir -r chain.exs -e "Chain.run(1_000)"
{8458, "Result is 1000"}

Now 10,000.

$ elixir -r chain.exs -e "Chain.run(10_000)"
{66769, "Result is 10000"}

Ten thousand processes created and executed in 66 ms. Let’s try for 400,000.

$ elixir -r chain.exs -e "Chain.run(400_000)"
=ERROR REPORT==== 25-Apr-2013::15:16:14 ===
Too many processes
** (SystemLimitError) a system limit has been reached

It looks like the virtual machine won’t support 400,000 processes. Fortunately,
this is not a hard limit—we just bumped into a default value. We can increase
this using the VM’s +P parameter. We pass this parameter to the VM using
the --erl parameter to elixir. (This is why I chose to run from the command line.)

$ elixir --erl "+P 1000000" -r chain.exs -e "Chain.run(400_000)"
{2249466, "Result is 400000"}

One last run, this time with 1,000,000 processes.

$ elixir --erl "+P 1000000" -r chain.exs -e "Chain.run(1_000_000)"
{5135238, "Result is 1000000"}

We ran a million processes (sequentially) in just over 5 seconds. And, as the
graph on page 206 shows, the time per process was pretty much linear once
we overcame the startup time.

This kind of performance is stunning, and it changes the way we design code.
We can now create hundreds of little helper processes. And each process can
contain its own state—in a way, processes in Elixir are like objects in an
object-oriented system (but they’re more self-contained).

report erratum • discuss

Process Overhead • 205

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

tim
e

(m
S)

10

100

1,000

10,000

Number of processes
100 10000 1000000

processes

time (mS)

10 4.015

100 4.562

1000 8.458

10000 66.769

400000 2249.466

1000000 5135.238

�1

Your Turn
➤ Exercise: WorkingWithMultipleProcesses-1

Run this code on your machine. See if you get comparable results.

➤ Exercise: WorkingWithMultipleProcesses-2
Write a program that spawns two processes and then passes each a unique
token (for example, “fred” and “betty”). Have them send the tokens back.

– Is the order in which the replies are received deterministic in theory?
In practice?

– If either answer is no, how could you make it so?

When Processes Die
Who gets told when a process dies? By default, no one. Obviously the VM
knows and can report it to the console, but your code will be oblivious unless
you explicitly tell Elixir you want to get involved. Here’s the default case: we
spawn a function that uses the Erlang timer library to sleep for 500 ms. It then
exits with a status of :boom. The code that spawns it sits in a receive. If it receives
a message, it reports that fact; otherwise, after one second it lets us know
that nothing happened.

spawn/link1.exs
defmodule Link1 do

import :timer, only: [sleep: 1]

def sad_function do
sleep 500
exit(:boom)

end

Chapter 15. Working with Multiple Processes • 206

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-2
http://media.pragprog.com/titles/elixir16/code/spawn/link1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def run do
spawn(Link1, :sad_function, [])
receive do
msg ->

IO.puts "MESSAGE RECEIVED: #{inspect msg}"
after 1000 ->

IO.puts "Nothing happened as far as I am concerned"
end

end
end

Link1.run

(Think about how you’d have written this in your old programming language.)

We can run this from the console:

$ elixir -r link1.exs
Nothing happened as far as I am concerned

The top level got no notification when the spawned process exited.

Linking Two Processes
If we want two processes to share in each other’s pain, we can link them.
When processes are linked, each can receive information when the other exits.
The spawn_link call spawns a process and links it to the caller in one operation.

spawn/link2.exs
defmodule Link2 do

import :timer, only: [sleep: 1]

def sad_function do
sleep 500
exit(:boom)

end
def run do

spawn_link(Link2, :sad_function, [])➤

receive do
msg ->

IO.puts "MESSAGE RECEIVED: #{inspect msg}"
after 1000 ->

IO.puts "Nothing happened as far as I am concerned"
end

end
end

Link2.run

The runtime reports the abnormal termination:

$ elixir -r link2.exs
** (EXIT from #PID<0.73.0>) :boom

report erratum • discuss

When Processes Die • 207

http://media.pragprog.com/titles/elixir16/code/spawn/link2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

So our child process died, and it killed the entire application. That’s the default
behavior of linked processes—when one exits abnormally, it kills the other.

What if you want to handle the death of another process? Well, you probably
don’t want to do this. Elixir uses the OTP framework for constructing process
trees, and OTP includes the concept of process supervision. An incredible
amount of effort has been spent getting this right, so I recommend using it
most of the time. (We cover this in Chapter 18, OTP: Supervisors, on page 247.)

However, you can tell Elixir to convert the exit signals from a linked process
into a message you can handle. Do this by trapping the exit.

spawn/link3.exs
defmodule Link3 do

import :timer, only: [sleep: 1]

def sad_function do
sleep 500
exit(:boom)

end
def run do

Process.flag(:trap_exit, true)➤

spawn_link(Link3, :sad_function, [])
receive do
msg ->

IO.puts "MESSAGE RECEIVED: #{inspect msg}"
after 1000 ->

IO.puts "Nothing happened as far as I am concerned"
end

end
end

Link3.run

This time we see an :EXIT message when the spawned process terminates:

$ elixir -r link3.exs
MESSAGE RECEIVED: {:EXIT, #PID<0.78.0>, :boom}

It doesn’t matter why a process exits—it may simply finish processing, it may
explicitly exit, or it may raise an exception—the same :EXIT message is received.
Following an error, however, it contains details of what went wrong.

Monitoring a Process
Linking joins the calling process and another process—each receives notifica-
tions about the other. By contrast, monitoring lets a process spawn another
and be notified of its termination, but without the reverse notification—it is
one-way only.

Chapter 15. Working with Multiple Processes • 208

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/link3.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

When you monitor a process, you receive a :DOWN message when it exits or
fails, or if it doesn’t exist.

You can use spawn_monitor to turn on monitoring when you spawn a process,
or you can use Process.monitor to monitor an existing process. However, if you
use Process.monitor (or link to an existing process), there is a potential race
condition—if the other process dies before your monitor call completes, you
may not receive a notification. The spawn_link and spawn_monitor versions are
atomic, however, so you’ll always catch a failure.

spawn/monitor1.exs
defmodule Monitor1 do

import :timer, only: [sleep: 1]

def sad_function do
sleep 500
exit(:boom)

end
def run do

res = spawn_monitor(Monitor1, :sad_function, [])➤

IO.puts inspect res
receive do
msg ->

IO.puts "MESSAGE RECEIVED: #{inspect msg}"
after 1000 ->

IO.puts "Nothing happened as far as I am concerned"
end

end
end

Monitor1.run

Run it, and the results are similar to the spawn_link version:

$ elixir -r monitor1.exs
{#PID<0.78.0>, #Reference<0.1328...>}
MESSAGE RECEIVED: {:DOWN, #Reference<0.1328...>, :process,

#PID<0.78.0>, :boom}

(The Reference record in the message is the identity of the monitor that was
created. The spawn_monitor call also returns it, along with the PID.)

So, when do you use links and when should you choose monitors?

It depends on your processes’ semantics. If the intent is that a failure in one
process should terminate another, then you need links. If instead you need
to know when some other process exits for any reason, choose monitors.

report erratum • discuss

When Processes Die • 209

http://media.pragprog.com/titles/elixir16/code/spawn/monitor1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
The Erlang function timer.sleep(time_in_ms) suspends the current process for a
given time. You might want to use it to force some scenarios in the following
exercises. The key with the exercises is to get used to the different reports
you’ll see when you’re developing code.

➤ Exercise: WorkingWithMultipleProcesses-3
Use spawn_link to start a process, and have that process send a message
to the parent and then exit immediately. Meanwhile, sleep for 500 ms in
the parent, then receive as many messages as are waiting. Trace what
you receive. Does it matter that you weren’t waiting for the notification
from the child when it exited?

➤ Exercise: WorkingWithMultipleProcesses-4
Do the same, but have the child raise an exception. What difference do
you see in the tracing?

➤ Exercise: WorkingWithMultipleProcesses-5
Repeat the two, changing spawn_link to spawn_monitor.

Parallel Map—The “Hello, World” of Erlang
Devin Torres reminded me that every book in the Erlang space must, by law,
include a parallel map function. Regular map returns the list that results from
applying a function to each element of a collection. The parallel version does
the same, but it applies the function to each element in a separate process.

spawn/pmap.exs
defmodule Parallel do

def pmap(collection, fun) do
me = self()
collection
|> Enum.map(fn (elem) ->

spawn_link fn -> (send me, { self(), fun.(elem) }) end
end)

|> Enum.map(fn (pid) ->
receive do { ^pid, result } -> result end

end)
end

end

Our method contains two transformations (look for the |> operator). The first
transformation maps collection into a list of PIDs, where each PID in the list
runs the given function on an individual list element. If the collection contains
1,000 items, we’ll run 1,000 processes.

Chapter 15. Working with Multiple Processes • 210

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-5
http://media.pragprog.com/titles/elixir16/code/spawn/pmap.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The second transformation converts the list of PIDs into the results returned
by the processes corresponding to each PID in the list. Note how it uses ^pid
in the receive block to get the result for each PID in turn. Without this we’d
get back the results in random order.

But does it work?

iex> c("pmap.exs")
[Parallel]
iex> Parallel.pmap 1..10, &(&1 * &1)
[1,4,9,16,25,36,49,64,81,100]

That’s pretty sweet, but it gets better, as we’ll cover when we look at tasks
and agents on page 293.

Your Turn
➤ Exercise: WorkingWithMultipleProcesses-6

In the pmap code, I assigned the value of self to the variable me at the top
of the method and then used me as the target of the message returned by
the spawned processes. Why use a separate variable here?

➤ Exercise: WorkingWithMultipleProcesses-7
Change the ^pid in pmap to _pid. This means the receive block will take
responses in the order the processes send them. Now run the code again.
Do you see any difference in the output? If you’re like me, you don’t, but
the program clearly contains a bug. Are you scared by this? Can you find
a way to reveal the problem (perhaps by passing in a different function,
by sleeping, or by increasing the number of processes)? Change it back
to ^pid and make sure the order is now correct.

A Fibonacci Server
Let’s round out this chapter with an example program. Its task is to calculate
fib(n) for a list of n, where fib(n) is the nth Fibonacci number. (The Fibonacci
sequence starts 0, 1. Each subsequent number is the sum of the preceding
two numbers in the sequence.)2 I chose this not because it is something we
all do every day, but because the naive calculation of Fibonacci numbers 10
through 37 takes a measurable number of seconds on typical computers.

The twist is that we’ll write our program to calculate different Fibonacci
numbers in parallel. To do this, we’ll write a trivial server process that does

2. http://en.wikipedia.org/wiki/Fibonacci_number

report erratum • discuss

A Fibonacci Server • 211

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-6
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-7
http://en.wikipedia.org/wiki/Fibonacci_number
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

the calculation, and a scheduler that assigns work to a calculation process
when it becomes free. The following diagram shows the message flow.

{ :ready, pid }

{ :�b, n, scheduler_pid }

{ :answer, n, �b(n), pid }

Fibonacci
Server

Scheduler

{ :shutdown }

(w
hen no w

ork)

When the calculator is ready for the next number, it sends a :ready message
to the scheduler. If there is still work to do, the scheduler sends it to the
calculator in a :fib message; otherwise it sends the calculator a :shutdown. When
a calculator receives a :fib message, it calculates the given Fibonacci number
and returns it in an :answer. If it gets a :shutdown, it simply exits.

Here’s the Fibonacci calculator module:

spawn/fib.exs
defmodule FibSolver do

def fib(scheduler) do
send scheduler, { :ready, self() }
receive do
{ :fib, n, client } ->

send client, { :answer, n, fib_calc(n), self() }
fib(scheduler)

{ :shutdown } ->
exit(:normal)

end
end

very inefficient, deliberately
defp fib_calc(0), do: 0
defp fib_calc(1), do: 1
defp fib_calc(n), do: fib_calc(n-1) + fib_calc(n-2)

end

The public API is the fib function, which takes the scheduler PID. When it starts,
it sends a :ready message to the scheduler and waits for a message back.

Chapter 15. Working with Multiple Processes • 212

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/fib.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

If it gets a :fib message, it calculates the answer and sends it back to the client.
It then loops by calling itself recursively. This will send another :ready message,
telling the client it is ready for more work.

If it gets a :shutdown it simply exits.

The Task Scheduler
The scheduler is a little more complex, as it is designed to handle both a
varying number of server processes and an unknown amount of work.

spawn/fib.exs
defmodule Scheduler do

def run(num_processes, module, func, to_calculate) do
(1..num_processes)
|> Enum.map(fn(_) -> spawn(module, func, [self()]) end)
|> schedule_processes(to_calculate, [])

end

defp schedule_processes(processes, queue, results) do
receive do
{:ready, pid} when length(queue) > 0 ->

[next | tail] = queue
send pid, {:fib, next, self()}
schedule_processes(processes, tail, results)

{:ready, pid} ->
send pid, {:shutdown}
if length(processes) > 1 do

schedule_processes(List.delete(processes, pid), queue, results)
else

Enum.sort(results, fn {n1,_}, {n2,_} -> n1 <= n2 end)
end

{:answer, number, result, _pid} ->
schedule_processes(processes, queue, [{number, result} | results])

end
end

end

The public API for the scheduler is the run function. It receives the number of
processes to spawn, the module and function to spawn, and a list of things
to process. The scheduler is pleasantly ignorant of the actual task being
performed.

Let’s emphasize that last point. Our scheduler knows nothing about
Fibonacci numbers. Exactly the same code will happily manage processes
working on DNA sequencing or password cracking.

report erratum • discuss

A Fibonacci Server • 213

http://media.pragprog.com/titles/elixir16/code/spawn/fib.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The run function spawns the correct number of processes and records their
PIDs. It then calls the workhorse function, schedule_processes.

This function is basically a receive loop. If it gets a :ready message from a server,
it sees if there is more work in the queue. If there is, it passes the next number
to the calculator and then recurses with one fewer number in the queue.

If the work queue is empty when it receives a :ready message, it sends a shutdown
to the server. If this is the last process, then we’re done and it sorts the
accumulated results. If it isn’t the last process, it removes the process from
the list of processes and recurses to handle another message.

Finally, if it gets an :answer message, it records the answer in the result accu-
mulator and recurses to handle the next message.

We drive the scheduler with the following code:

spawn/fib.exs
to_process = List.duplicate(37, 20)

Enum.each 1..10, fn num_processes ->
{time, result} = :timer.tc(

Scheduler, :run,
[num_processes, FibSolver, :fib, to_process]

)

if num_processes == 1 do
IO.puts inspect result
IO.puts "\n # time (s)"

end
:io.format "~2B ~.2f~n", [num_processes, time/1000000.0]

end

The to_process list contains the numbers we’ll be passing to our fib servers. In
our case, we give it the same number, 37, 20 times. The intent here is to load
each of our processors.

We run the code a total of 10 times, varying the number of spawned processes
from 1 to 10. We use :timer.tc to determine the elapsed time of each iteration,
reporting the result in seconds. The first time around the loop, we also display
the numbers we calculated.

$ elixir fib.exs
[{37, 24157817}, {37, 24157817}, {37, 24157817}, . . .]

time (s)
1 21.22
2 11.24
3 7.99
4 5.89
5 5.95

Chapter 15. Working with Multiple Processes • 214

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/fib.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

6 6.40
7 6.00
8 5.92
9 5.84

10 5.85

Cody Russell kindly ran this for me on his four-core system. He saw a dramatic
reduction in elapsed time when we increase the concurrency from one to two,
small decreases until we hit four processes, then fairly flat performance after
that. The Activity Monitor showed a consistent 380% CPU use once the con-
currency got above 4. (If you want to see similar results on systems with more
cores, you’ll need to increase the number of entries in the to_process list.)

Your Turn
➤ Exercise: WorkingWithMultipleProcesses-8

Run the Fibonacci code on your machine. Do you get comparable timings?
If your machine has multiple cores and/or processors, do you see
improvements in the timing as we increase the application’s concurrency?

➤ Exercise: WorkingWithMultipleProcesses-9
Take this scheduler code and update it to let you run a function that finds
the number of times the word “cat” appears in each file in a given directory.
Run one server process per file. The function File.ls! returns the names of
files in a directory, and File.read! reads the contents of a file as a binary.
Can you write it as a more generalized scheduler?

Run your code on a directory with a reasonable number of files (maybe
around 100) so you can experiment with the effects of concurrency.

Agents—A Teaser
Our Fibonacci code is really inefficient. To calculate fib(5), we calculate this:

fib(5)
= fib(4) + fib(3)
= fib(3) + fib(2) + fib(2) + fib(1)
= fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)
= fib(1) + fib(0) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)

Look at all that duplication. If only we could cache the intermediate values.

As you know, Elixir modules are basically buckets of functions—they cannot
hold state. But processes can hold state. And Elixir comes with a library
module called Agent that makes it easy to wrap a process containing state in a
nice module interface. Don’t worry about the details of the code that follows—we

report erratum • discuss

Agents—A Teaser • 215

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-8
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-9
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

cover agents and tasks on page 293. For now, just see how processes are among
the tools we use to add persistence to Elixir code. (This code comes from a
mailing-list post by José Valim, written in response to some ugly code I wrote.)

spawn/fib_agent.exs
defmodule FibAgent do

def start_link do
Agent.start_link(fn -> %{ 0 => 0, 1 => 1 } end)

end

def fib(pid, n) when n >= 0 do
Agent.get_and_update(pid, &do_fib(&1, n))

end

defp do_fib(cache, n) do
case cache[n] do
nil ->

{ n_1, cache } = do_fib(cache, n-1)
result = n_1 + cache[n-2]
{ result, Map.put(cache, n, result) }

cached_value ->
{ cached_value , cache }

end
end

end

{:ok, agent} = FibAgent.start_link()
IO.puts FibAgent.fib(agent, 2000)

Let’s run it:

$ elixir fib_agent.exs
42246963333923048787067256023414827825798528402506810980102801373143085843701
30707224123599639141511088446087538909603607640194711643596029271983312598737
32625355580260699158591522949245390499872225679531698287448247299226390183371
67780606070116154978867198798583114688708762645973690867228840236544222952433
47964480139515349562972087652656069529806499841977448720155612802665404554171
717881930324025204312082516817125

If we’d tried to calculate fib(2000) using the noncached version, the sun would
grow to engulf the Earth while we were waiting for it to finish.

Thinking in Processes
If you first started programming with procedural languages and then moved
to an object-oriented style, you’ll have experienced a period of dislocation as
you tried to get your head to think in terms of objects.

The same will be happening now as you start to think of your work in terms
of processes. Just about every decent Elixir program will have many, many

Chapter 15. Working with Multiple Processes • 216

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/spawn/fib_agent.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

processes, and by and large they’ll be just as easy to create and manage as
the objects were in object-oriented programming. But learning to think that
way takes awhile. Stick with it.

So far we’ve been running our processes in the same VM. But if we’re planning
on taking over the world, we need to be able to scale. And that means running
on more than one machine.

The abstraction for this is the node, and that’s the subject of the next chapter.

report erratum • discuss

Thinking in Processes • 217

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 16

Nodes—The Key to Distributing Services
There’s nothing mysterious about a node. It is simply a running Erlang VM.
Throughout this book we’ve been running our code on a node.

The Erlang VM, called Beam, is more than a simple interpreter. It’s like its
own little operating system running on top of your host operating system. It
handles its own events, process scheduling, memory, naming services, and
interprocess communication. In addition to all that, a node can connect to
other nodes—in the same computer, across a LAN, or across the Internet—and
provide many of the same services across these connections that it provides
to the processes it hosts locally.

Naming Nodes
So far we haven’t needed to give our node a name—we’ve had only one. If we
ask Elixir what the current node is called, it’ll give us a made-up name:

iex> Node.self
:nonode@nohost

We can set the name of a node when we start it. With IEx, use either the --name
or --sname option. The former sets a fully qualified name:

$ iex --name wibble@light-boy.local
iex(wibble@light-boy.local)> Node.self
:"wibble@light-boy.local"

The latter sets a short name:

$ iex --sname wobble
iex(wobble@light-boy)> Node.self
:"wobble@light-boy"

The name that’s returned is an atom—it’s in quotes because it contains
characters not allowed in a literal atom.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Note that in both cases the IEx prompt contains the node’s name along with
my machine’s name (light-boy).

If You Run OS X

Apple did something strange a while back—the local hostname is
resolved only if you have particular sharing services enabled. If they
aren’t enabled, then you can’t access your computer using its name.
This means that Elixir can’t find it when using the --sname option.

The simplest fix, which is a bit of a hack, it to add your machine’s
name to your /etc/hosts file.

First find the name:

$ scutil --get LocalHostName
«your-computer's-name»

Then edit /etc/hosts (you’ll need to use sudo) and add this line:

127.0.0.1 «your-computer's-name»

Now I want to show you what happens when we have two nodes running. The
easiest way to do this is to open two terminal windows and run a node in
each. To represent these windows in the book, I’ll show them stacked vertically.

Let’s run a node called node_one in the top window and node_two in the bottom
one. We’ll then use the Elixir Node module’s list function to display a list of
known nodes, then connect from one to the other.

Window #1
$ iex --sname node_one
iex(node_one@light-boy)>

Window #2
$ iex --sname node_two
iex(node_two@light-boy)> Node.list
[]
iex(node_two@light-boy)> Node.connect :"node_one@light-boy"
true
iex(node_two@light-boy)> Node.list
[:"node_one@light-boy"]

Initially, node_two doesn’t know about any other nodes. But after we connect
to node_one (notice that we pass an atom containing that node’s name), the list
shows the other node. And if we go back to node one, it will now know about
node two.

Chapter 16. Nodes—The Key to Distributing Services • 220

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex(node_one@light-boy)> Node.list
[:"node_two@light-boy"]

Now that we have two nodes, we can try running some code. On node one,
let’s create an anonymous function that outputs the current node name.

iex(node_one@light-boy)> func = fn -> IO.inspect Node.self end
#Function<erl_eval.20.82930912>

We can run this with the spawn function.

iex(node_one@light-boy)> spawn(func)
#PID<0.59.0>
node_one@light-boy

But spawn also lets us specify a node name. The process will be spawned on
that node.

iex(node_one@light-boy)> Node.spawn(:"node_one@light-boy", func)
#PID<0.57.0>
node_one@light-boy
iex(node_one@light-boy)> Node.spawn(:"node_two@light-boy", func)
#PID<7393.48.0>
node_two@light-boy

We’re running on node one. When we tell spawn to run on node_one@light-boy, we
see two lines of output. The first is the PID spawn returns, and the second is
the value of Node.self that the function writes.

The second spawn is where it gets interesting. We pass it the name of node two
and the same function we used the first time. Again we get two lines of output.
The first is the PID and the second is the node name. Notice the PID’s contents.
The first field in a PID is the node number. When running on a local node,
it’s zero. But here we’re running on a remote node, so that field has a positive
value (7393). Then look at the function’s output. It reports that it is running
on node two. I think that’s pretty cool.

You may have been expecting the output from the second spawn to appear in
the lower window. After all, the code runs on node two. But it was created on
node one, so it inherits its process hierarchy from node one. Part of that
hierarchy is something called the group leader, which (among other things)
determines where IO.puts sends its output. So in a way, what we’re seeing is
doubly impressive. We start on node one, run a process on node two, and
when the process outputs something, it appears back on node one.

report erratum • discuss

Naming Nodes • 221

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: Nodes-1

Set up two terminal windows, and go to a different directory in each. Then
start up a named node in each. In one window, write a function that lists
the contents of the current directory.

fun = fn -> IO.puts(Enum.join(File.ls!, ",")) end

Run it twice, once on each node.

Nodes, Cookies, and Security
Although this is cool, it might also ring some alarm bells. If you can run
arbitrary code on any node, then anyone with a publicly accessible node has
just handed over his machine to any random hacker.

But that’s not the case. Before a node will let another connect, it checks that
the remote node has permission. It does that by comparing that node’s cookie
with its own cookie. A cookie is just an arbitrary string (ideally fairly long and
very random). As an administrator of a distributed Elixir system, you need
to create a cookie and then make sure all nodes use it.

If you are running the iex or elixir commands, you can pass in the cookie using
the --cookie option.

$ iex --sname one --cookie chocolate-chip
iex(one@light-boy)> Node.get_cookie
:"chocolate-chip"

If we repeat our two-node experiment and explicitly set the cookie names to
be different, what happens?

Window #1
$ iex --sname node_one --cookie cookie-one
iex(node_one@light-boy)> Node.connect :"node_two@light-boy"
false

Window #2
$ iex --sname node_two --cookie cookie-two
iex(node_two@light-boy)>
=ERROR REPORT==== 27-Apr-2013::21:27:43 ===
** Connection attempt from disallowed node 'node_one@light-boy' **

The node that attempts to connect receives false, indicating the connection
was not made. And the node that it tried to connect to logs an error describing
the attempt.

Chapter 16. Nodes—The Key to Distributing Services • 222

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

But why does it succeed when we don’t specify a cookie? When Erlang starts,
it looks for an .erlang.cookie file in your home directory. If that file doesn’t exist,
Erlang creates it and stores a random string in it. It uses that string as the
cookie for any node the user starts. That way, all nodes you start on a partic-
ular machine are automatically given access to each other.

Be careful when connecting nodes over a public network—the cookie is
transmitted in plain text.

Naming Your Processes
Although a PID is displayed as three numbers, it contains just two fields; the
first number is the node ID and the next two numbers are the low and high
bits of the process ID. When you run a process on your current node, its node
ID will always be zero. However, when you export a PID to another node, the
node ID is set to the number of the node on which the process lives.

That works well once a system is up and running and everything is knitted
together. If you want to register a callback process on one node and an event-
generating process on another, just give the callback PID to the generator.

But how can the callback find the generator in the first place? One way is for
the generator to register its PID, giving it a name. The callback on the other
node can look up the generator by name, using the PID that comes back to
send messages to it.

Here’s an example. Let’s write a simple server that sends a notification about
every 2 seconds. To receive the notification, a client has to register with the
server. And we’ll arrange things so that clients on different nodes can register.

While we’re at it, we’ll do a little packaging so that to start the server you run
Ticker.start, and to start the client you run Client.start. We’ll also add an API Tick-
er.register to register a client with the server.

Here’s the server code:

nodes/ticker.ex
defmodule Ticker do

@interval 2000 # 2 seconds
@name :ticker

def start do
pid = spawn(__MODULE__, :generator, [[]])
:global.register_name(@name, pid)

end

report erratum • discuss

Naming Your Processes • 223

http://media.pragprog.com/titles/elixir16/code/nodes/ticker.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def register(client_pid) do
send :global.whereis_name(@name), { :register, client_pid }

end

def generator(clients) do
receive do
{ :register, pid } ->

IO.puts "registering #{inspect pid}"
generator([pid|clients])

after
@interval ->

IO.puts "tick"
Enum.each clients, fn client ->

send client, { :tick }
end
generator(clients)

end
end

end

We define a start function that spawns the server process. It then uses
:global.register_name to register the PID of this server under the name :ticker.

Clients who want to register to receive ticks call the register function. This
function sends a message to the Ticker server, asking it to add those clients
to its list. Clients could have done this directly by sending the :register message
to the server process. Instead, we give them an interface function that hides
the registration details. This helps decouple the client from the server and
gives us more flexibility to change things in the future.

Before we look at the actual tick process, let’s stop to consider the start and
register functions. These are not part of the tick process—they are simply
chunks of code in the Ticker module. This means they can be called directly
wherever we have the module loaded—no message passing required. This is
a common pattern; we have a module that is responsible both for spawning
a process and for providing the external interface to that process.

Back to the code. The last function, generator, is the spawned process. It waits
for two events. When it gets a tuple containing :register and a PID, it adds the
PID to the list of clients and recurses. Alternatively, it may time out after 2
seconds, in which case it sends a {:tick} message to all registered clients.

(This code has no error handling and no means of terminating the process. I
just wanted to illustrate passing PIDs and messages between nodes.) The
client code is simple:

nodes/ticker.ex
defmodule Client do

Chapter 16. Nodes—The Key to Distributing Services • 224

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/nodes/ticker.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def start do
pid = spawn(__MODULE__, :receiver, [])
Ticker.register(pid)

end

def receiver do
receive do
{ :tick } ->

IO.puts "tock in client"
receiver()

end
end

end

It spawns a receiver to handle the incoming ticks, and passes the receiver’s
PID to the server as an argument to the register function. Again, it’s worth
noting that this function call is local—it runs on the same node as the client.
However, inside the Ticker.register function, it locates the node containing the
server and sends it a message. As our client’s PID is sent to the server, it
becomes an external PID, pointing back to the client’s node.

The spawned client process simply loops, writing a cheery message to the
console whenever it receives a tick message.

Let’s run it. We’ll start up our two nodes. We’ll call Ticker.start on node one.
Then we’ll call Client.start on both node one and node two.

Window #1
nodes % iex --sname one
iex(one@light-boy)> c("ticker.ex")
[Client,Ticker]
iex(one@light-boy)> Node.connect :"two@light-boy"
true
iex(one@light-boy)> Ticker.start
:yes
tick
tick
iex(one@light-boy)> Client.start
registering #PID<0.59.0>
{:register,#PID<0.59.0>}
tick
tock in client
tick
tock in client
tick
tock in client
tick
tock in client
: : :

report erratum • discuss

Naming Your Processes • 225

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Window #2
nodes % iex --sname two
iex(two@light-boy)> c("ticker.ex")
[Client,Ticker]
iex(two@light-boy)> Client.start
{:register,#PID<0.53.0>}
tock in client
tock in client
tock in client
: : :

To stop this, you’ll need to exit IEx on both nodes.

When to Name Processes
When you name something, you are recording some global state. And as we
all know, global state can be troublesome. What if two processes try to register
the same name, for example?

The runtime has some tricks to help us. In particular, we can list the names
our application will register in the app’s mix.exs file. (We’ll cover how when we
look at packaging an application on page 278.) However, the general rule is to
register your process names when your application starts.

Your Turn
➤ Exercise: Nodes-2

When I introduced the interval server, I said it sent a tick “about every 2
seconds.” But in the receive loop, it has an explicit timeout of 2,000 ms.
Why did I say “about” when it looks as if the time should be pretty accurate?

➤ Exercise: Nodes-3
Alter the code so that successive ticks are sent to each registered client
(so the first goes to the first client, the second to the next client, and so
on). Once the last client receives a tick, the process starts back at the
first. The solution should deal with new clients being added at any time.

Input, Output, PIDs, and Nodes
Input and output in the Erlang VM are performed using I/O servers. These
are simply Erlang processes that implement a low-level message interface.
You never have to deal with this interface directly (which is a good thing, as
it is complex). Instead, you use the various Elixir and Erlang I/O libraries
and let them do the heavy lifting.

Chapter 16. Nodes—The Key to Distributing Services • 226

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In Elixir you identify an open file or device by the PID of its I/O server. And these
PIDs behave like all other PIDs—you can, for example, send them between
nodes. If you look at the implementation of Elixir’s IO.puts function, you’ll see

def puts(device \\ group_leader(), item) do
erl_dev = map_dev(device)
:io.put_chars erl_dev, [to_iodata(item), ?\n]

end

(To see the source of an Elixir library module, view the online documentation
at http://elixir-lang.org/docs/, navigate to the function in question, and click the
Source link.)

The default device it uses is returned by the function :erlang.group_leader. (The
group_leader function is imported from the :erlang module at the top of the IO
module.) This will be the PID of an I/O server.

So, bring up two terminal windows and start a different named node in each.
Connect to node one from node two, and register the PID returned by
group_leader under a global name (we use :two).

Window #1
$ iex --sname one
iex(one@light-boy) >

Window #2
$ iex --sname two
iex(two@light-boy) > Node.connect(:"one@light-boy")
true
iex(two@light-boy) > :global.register_name(:two, :erlang.group_leader)
:yes

Note that once we’ve registered the PID, we can access it from the other node.
And once we’ve done that, we can pass it to IO.puts; the output appears in the
other terminal window.

Window #1
iex(one@light-boy) > two = :global.whereis_name :two
#PID<7419.30.0>
iex(one@light-boy) > IO.puts(two, "Hello")
:ok
iex(one@light-boy) > IO.puts(two, "World!")
:ok

Window #2
Hello
World
iex(two@light-boy) >

report erratum • discuss

Input, Output, PIDs, and Nodes • 227

http://elixir-lang.org/docs/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: Nodes-4

The ticker process in this chapter is a central server that sends events to
registered clients. Reimplement this as a ring of clients. A client sends a
tick to the next client in the ring. After 2 seconds, that client sends a tick
to its next client.

When thinking about how to add clients to the ring, remember to deal
with the case where a client’s receive loop times out just as you’re adding
a new process. What does this say about who has to be responsible for
updating the links?

Nodes Are the Basis of Distribution
We’ve seen how we can create and interlink a number of Erlang virtual
machines, potentially communicating across a network. This is important,
both to allow your application to scale and to increase reliability. Running all
your code on one machine is like having all your eggs in one basket. Unless
you’re writing a mobile omelet app, this is probably not a good idea.

It’s easy to write concurrent applications with Elixir. But writing code that
follows the happy path is a lot easier than writing bullet-proof, scalable, and
hot-swappable world-beating apps. For that, you’re going to need some help.

In the worlds of Elixir and Erlang, that help is called OTP, and it is the subject
of the next few chapters.

Chapter 16. Nodes—The Key to Distributing Services • 228

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-4
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 17

OTP: Servers
If you’ve been following Elixir or Erlang, you’ve probably come across OTP. It
is often hyped as the answer to all high-availability distributed-application
woes. It isn’t, but it certainly solves many problems that you’d otherwise need
to solve yourself, including application discovery, failure detection and man-
agement, hot code swapping, and server structure.

First, the obligatory one-paragraph history. OTP stands for the Open Telecom
Platform, but the full name is largely of historical interest and everyone just
says OTP. It was initially used to build telephone exchanges and switches.
But these devices have the same characteristics we want from any large online
application, so OTP is now a general-purpose tool for developing and managing
large systems.

OTP is actually a bundle that includes Erlang, a database (wonderfully called
Mnesia), and an innumerable number of libraries. It also defines a structure
for your applications. But, as with all large, complex frameworks, there is a
lot to learn. In this book we’ll focus on the essentials and I’ll point you toward
other information sources.

We’ve been using OTP all along—mix, the Elixir compiler, and even our issue
tracker followed OTP conventions. But that use was implicit. Now we’ll make
it explicit and start writing servers using OTP.

Some OTP Definitions
OTP defines systems in terms of hierarchies of applications. An application
consists of one or more processes. These processes follow one of a small
number of OTP conventions, called behaviors. There is a behavior used for
general-purpose servers, one for implementing event handlers, and one for
finite-state machines. Each implementation of one of these behaviors will run

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

in its own process (and may have additional associated processes). In this
chapter we’ll be implementing the server behavior, called GenServer.

A special behavior, called supervisor, monitors the health of these processes
and implements strategies for restarting them if needed.

We’ll take a look at these components from the bottom up—this chapter will
cover servers, the next will explore supervisors, and finally we’ll implement
applications.

An OTP Server
When we wrote our Fibonacci server in the previous chapter, on page 211, we
had to do all the message handling ourselves. It wasn’t difficult, but it was
tedious. Our scheduler also had to keep track of three pieces of state informa-
tion: the queue of numbers to process, the results generated so far, and the
list of active PIDs.

Most servers have a similar set of needs, so OTP provides libraries that do all
the low-level work for us.

When we write an OTP server, we write a module containing one or more callback
functions with standard names. OTP will invoke the appropriate callback to
handle a particular situation. For example, when someone sends a request to
our server, OTP will call our handle_call function, passing in the request, the caller,
and the current server state. Our function responds by returning a tuple con-
taining an action to take, the return value for the request, and an updated state.

State and the Single Server
Think back to our recursive Fibonacci code. Where did it keep all the interme-
diate results as it worked? It passed them to itself, recursively, as parameters.
In fact, all three of its parameters were used for state information.

Now think about servers. They use recursion to loop, handling one request
on each call. So they can also pass state to themselves as a parameter in this
recursive call. And that’s one of the things OTP manages for us. Our handler
functions get passed the current state (as their last parameter), and they
return (among other things) a potentially updated state. Whatever state a
function returns is the state that will be passed to the next request handler.

Our First OTP Server
Let’s write what is possibly the simplest OTP server. You pass it a number
when you start it up, and that becomes the current state of the server. When

Chapter 17. OTP: Servers • 230

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

you call it with a :next_number request, it returns that current state to the caller,
and at the same time increments the state, ready for the next call. Basically,
each time you call it you get an updated sequence number.

Create a New Project Using Mix

Start by creating a new mix project in your work directory. We’ll call it sequence.

$ mix new sequence
* creating README.md
* creating .formatter.exs
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/sequence.ex
* creating test
* creating test/test_helper.exs
* creating test/sequence_test.exs

Create the Basic Sequence Server

Now we’ll create Sequence.Server, our server module. Move into the sequence
directory, and create a subdirectory under lib/ also called sequence.

$ cd sequence
$ mkdir lib/sequence

Add the file server.ex to lib/sequence/:

otp-server/1/sequence/lib/sequence/server.ex
defmodule Sequence.Server doLine 1

use GenServer-

-

def init(initial_number) do-

{ :ok, initial_number }5

end-

-

def handle_call(:next_number, _from, current_number) do-

{:reply, current_number, current_number + 1}-

end10

end-

The first thing to note is line 2. The use line effectively adds the OTP
GenServer behavior to our module. This is what lets it handle all the callbacks.
It also means we don’t have to define every callback in our module—the
behavior defines defaults for all but one of them.

The exception is the init/1 function, defined on line 4. You can think of init as
being like the constructor in an object-oriented language: A constructor takes

report erratum • discuss

An OTP Server • 231

http://media.pragprog.com/titles/elixir16/code/otp-server/1/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

values and creates the object’s initial state, and init takes some initial value
and uses it to construct the state of the server. This state is returned as the
second element of the {:ok, state} tuple. In our case, we use the init function to
set the initial value of our counter.

When a client calls our server, GenServer invokes its handle_call function. This
function receives three parameters:

1. The information the client passed to the call

2. The PID of the client

3. The server state

Your implementation of the function should perform the actions associated
with the first parameter, and may update the state (the third parameter).
When the handle_call function exits, it must return the state (updated or not).

The initial state of a GenServer is set by the return value of the init function.

Our implementation is simple: we return a tuple to OTP.

{ :reply, current_number, current_number+1 }

The reply element tells OTP to reply to the client, passing back the value that
is the second element. Finally, the tuple’s third element defines the new state.
This will be passed as the last parameter to handle_call the next time it is
invoked.

Fire Up Our Server Manually

We can play with our server in IEx. Open it in the project’s main directory,
remembering the -S mix option.

$ iex -S mix
iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)
{:ok,#PID<0.71.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> GenServer.call(pid, :next_number)
102

We’re using two functions from the Elixir GenServer module. The start_link function
behaves like the spawn_link function we used in the previous chapter. It asks
GenServer to start a new process and link to us (so we’ll get notifications if it
fails). We pass in the module to run as a server: the initial state (100 in this

Chapter 17. OTP: Servers • 232

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

case). We could also pass GenServer options as a third parameter, but the
defaults work fine here.

We get back a status (:ok) and the server’s PID. The call function takes this
PID and calls the handle_call function in the server. The call’s second parameter
is passed as the first argument to handle_call.

In our case, the only value we need to pass is the identity of the action we
want to perform, :next_number. If you look at the definition of handle_call in the
server, you’ll see that its first parameter is :next_number. When Elixir invokes
the function, it pattern-matches the argument in the call with this first
parameter in the function. A server can support multiple actions by imple-
menting multiple handle_call functions with different first parameters.

If you want to pass more than one thing in the call to a server, pass a tuple.
For example, our server might need a function to reset the count to a given
value. We could define the handler as

def handle_call({:set_number, new_number}, _from, _current_number) do
{ :reply, new_number, new_number }

end

and call it with

iex> GenServer.call(pid, {:set_number, 999})
999

Similarly, a handler can return multiple values by packaging them into a
tuple or list.

def handle_call({:factors, number}, _, _) do
{ :reply, { :factors_of, number, factors(number)}, [] }

end

Your Turn
➤ Exercise: OTP-Servers-1

You’re going to start creating a server that implements a stack. The call
that initializes your stack will pass in a list of the initial stack contents.

For now, implement only the pop interface. It’s acceptable for your server
to crash if someone tries to pop from an empty stack.

For example, if initialized with [5,"cat",9], successive calls to pop will return
5, "cat", and 9.

report erratum • discuss

An OTP Server • 233

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

One-Way Calls

The call function calls a server and waits for a reply. But sometimes you won’t
want to wait because there is no reply coming back. In those circumstances,
use the GenServer cast function. (Think of it as casting your request into the
sea of servers.)

Just like call is passed to handle_call in the server, cast is sent to handle_cast.
Because there’s no response possible, the handle_cast function takes only two
parameters: the call argument and the current state. And because it doesn’t
want to send a reply, it will return the tuple {:noreply, new_state}.

Let’s modify our sequence server to support an :increment_number function. We’ll
treat this as a cast, so it simply sets the new state and returns.

otp-server/1/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

def init(initial_number) do
{ :ok, initial_number }

end

def handle_call(:next_number, _from, current_number) do
{:reply, current_number, current_number + 1}

end

def handle_cast({:increment_number, delta}, current_number) do➤

{ :noreply, current_number + delta}➤

end➤

end

Notice that the cast handler takes a tuple as its first parameter. The first
element is :increment_number, and is used by pattern matching to select the
handlers to run. The second element of the tuple is the delta to add to our
state. The function simply returns a tuple, where the state is the previous
state plus this number.

To call this from our IEx session, we first have to recompile our source. The
r command takes a module name and recompiles the file containing that
module.

iex> r Sequence.Server
.../sequence/lib/sequence/server.ex:2: redefining module Sequence.Server
{Sequence.Server,[Sequence.Server]]

Even though we’ve recompiled the code, the old version is still running. The
VM doesn’t hot-swap code until you explicitly access it by module name. So,
to try our new functionality we’ll create a new server. When it starts, it will
pick up the latest version of the code.

Chapter 17. OTP: Servers • 234

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-server/1/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)
{:ok,#PID<0.60.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> GenServer.cast(pid, {:increment_number, 200})
:ok
iex> GenServer.call(pid, :next_number)
302

Tracing a Server’s Execution
The third parameter to start_link is a set of options. A useful one during devel-
opment is the debug trace, which logs message activity to the console.

We enable tracing using the debug option:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:trace]])➤

{:ok,#PID<0.68.0>}
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 100 to <0.25.0>, new state 101
100
iex> GenServer.call(pid, :next_number)
DBG <0.68.0> got call next_number from <0.25.0>
DBG <0.68.0> sent 101 to <0.25.0>, new state 102
101

See how it traces the incoming call and the response we send back. A nice
touch is that it also shows the next state.

We can also include :statistics in the debug list to ask a server to keep some
basic statistics:

iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:statistics]])➤

{:ok,#PID<0.69.0>}
iex> GenServer.call(pid, :next_number)
100
iex> GenServer.call(pid, :next_number)
101
iex> :sys.statistics pid, :get
{:ok,
[

start_time: {{2017, 12, 23}, {14, 6, 7}},
current_time: {{2017, 12, 23}, {14, 6, 24}},
reductions: 36,
messages_in: 2,
messages_out: 0

]}

report erratum • discuss

An OTP Server • 235

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Most of the fields should be fairly obvious. Timestamps are given as
{{y,m,d},{h,m,s}} tuples. The reductions value is a measure of the amount of work
the server does. It is used in process scheduling as a way of making sure all
processes get a fair share of the available CPU.

The Erlang sys module is your interface to the world of system messages.
These are sent in the background between processes—they’re a bit like the
backchatter in a multiplayer video game. While two players are engaged in
an attack (their real work), they can also be sending each other background
messages: “Where are you?,” “Stop moving,” and so on.

The list associated with the debug parameter you give to GenServer is simply
the names of functions to call in the sys module. If you say [debug: [:trace,
:statistics]], then those functions will be called in sys, passing in the server’s
PID. Look at the documentation for sys to see what’s available.1

This also means you can turn things on and off after you have started a
server. For example, you can enable tracing on an existing server using the
following:

iex> :sys.trace pid, true
:ok
iex> GenServer.call(pid, :next_number)
DBG <0.69.0> got call next_number from <0.25.0>
DBG <0.69.0> sent 105 to <0.25.0>, new state 106
105
iex> :sys.trace pid, false
:ok
iex> GenServer.call(pid, :next_number)
106

get_status is another useful sys function:

iex> :sys.get_status pid
{:status, #PID<0.134.0>, {:module, :gen_server},
[

[
"$initial_call": {Sequence.Server, :init, 1},
"$ancestors": [#PID<0.118.0>, #PID<0.57.0>]

],
:running,
#PID<0.118.0>,
[statistics: {{{2017, 12, 23}, {14, 11, 13}}, {:reductions, 14}, 3, 0},
[

header: 'Status for generic server <0.134.0>',
data: [

1. http://www.erlang.org/documentation/doc-5.8.3/lib/stdlib-1.17.3/doc/html/sys.html

Chapter 17. OTP: Servers • 236

report erratum • discuss

http://www.erlang.org/documentation/doc-5.8.3/lib/stdlib-1.17.3/doc/html/sys.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

{'Status', :running},
{'Parent', #PID<0.118.0>},
{'Logged events', []}

],
data: [{'State', 103}]

]

This is the default formatting of the status message GenServer provides. You
have the option to change the data: part to a more application-specific message
by defining a format_status function. This receives an option describing why the
function was called, as well as a list containing the server’s process dictionary
and the current state. (Note that in the code that follows, the string State in
the response is in single quotes.)

otp-server/1/sequence/lib/sequence/server.ex
def format_status(_reason, [_pdict, state]) do

[data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]
end

If we ask for the status in IEx, we get the new message (after restarting the
server):

iex> :sys.get_status pid
{:status, #PID<0.124.0>, {:module, :gen_server},
[

[
"$initial_call": {Sequence.Server, :init, 1},
"$ancestors": [#PID<0.118.0>, #PID<0.57.0>]

],
:running,
#PID<0.118.0>,
[statistics: {{{2017, 12, 23}, {14, 6, 7}}, {:reductions, 14}, 2, 0}],
[

header: 'Status for generic server <0.124.0>',
data: [

{'Status', :running},
{'Parent', #PID<0.118.0>},
{'Logged events', []}

],
data: [{'State', "My current state is '102', and I'm happy"}]

]
]}

Your Turn
➤ Exercise: OTP-Servers-2

Extend your stack server with a push interface that adds a single value to
the top of the stack. This will be implemented as a cast.

Experiment in IEx with pushing and popping values.

report erratum • discuss

An OTP Server • 237

http://media.pragprog.com/titles/elixir16/code/otp-server/1/sequence/lib/sequence/server.ex
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

GenServer Callbacks
GenServer is an OTP protocol. OTP works by assuming that your module
defines a number of callback functions (six, in the case of a GenServer). If
you were writing a GenServer in Erlang, your code would have to contain
implementations of all six.

When you add the line ‘use GenServer‘ to a module, Elixir creates default
implementations of these six callback functions. All we have to do is override
the ones where we add our own application-specific behavior. Our examples
so far have used the three callbacks ‘init‘, ‘handle_call‘, and ‘handle_cast‘.
Here’s a full list:

init(start_arguments)
Called by GenServer when starting a new server. The parameter is the
second argument passed to start_link. It should return {:ok, state} on success,
or {:stop, reason} if the server could not be started.

You can specify an optional timeout using {:ok, state, timeout}, in which case
GenServer sends the process a :timeout message whenever no message is
received in a span of timeout ms. (The message is passed to the handle_info
function.)

The default GenServer implementation sets the server state to the argu-
ment you pass.

handle_call(request, from, state)
Invoked when a client uses GenServer.call(pid, request). The from parameter is
a tuple containing the PID of the client and a unique tag. The state
parameter is the server state.

On success it returns {:reply, result, new_state}. The list that follows this one,
on page 239, shows other valid responses.

The default implementation stops the server with a :bad_call error, so you’ll
need to implement handle_call for every call request type your server
implements.

handle_cast(request, state)
Called in response to GenServer.cast(pid, request).

A successful response is {:noreply, new_state}. It can also return {:stop, reason,
new_state}.

The default implementation stops the server with a :bad_cast error.

Chapter 17. OTP: Servers • 238

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

handle_info(info, state)
Called to handle incoming messages that are not call or cast requests.
For example, timeout messages are handled here. So are termination mes-
sages from any linked processes. In addition, messages sent to the PID
using send (so they bypass GenServer) will be routed to this function.

terminate(reason, state)
Called when the server is about to be terminated. However, as we’ll discuss
in the next chapter, once we add supervision to our servers, we don’t have
to worry about this.

code_change(from_version, state, extra)
Updates a running server without stopping the system. However, the new
version of the server may represent its state differently from the old ver-
sion. The code_change callback is invoked to change from the old state format
to the new.

format_status(reason, [pdict, state])
Used to customize the state display of the server. The conventional
response is [data: [{'State', state_info}]].

The call and cast handlers return standardized responses. Some of these
responses can contain an optional :hibernate or timeout parameter. If hibernate is
returned, the server state is removed from memory but is recovered on the next
request. This saves memory at the expense of some CPU. The timeout option can
be the atom :infinite (which is the default) or a number. If the latter, a :timeout
message is sent if the server is idle for the specified number of milliseconds.

The first two responses are common between call and cast.

{ :noreply, new_state [, :hibernate | timeout] }

{ :stop, reason, new_state }
Signal that the server is to terminate.

Only handle_call can use the last two.

{ :reply, response, new_state [, :hibernate | timeout] }
Send response to the client.

{ :stop, reason, reply, new_state }
Send the response and signal that the server is to terminate.

report erratum • discuss

GenServer Callbacks • 239

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Naming a Process
The idea of referencing processes by their PIDs gets old quickly. Fortunately,
there are a number of alternatives.

The simplest is local naming. We assign a name that is unique for all OTP
processes on our node, and then we use that name instead of the PID when-
ever we reference it. To create a locally named process, we use the name: option
when we start the server:

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100, name: :seq)➤

{:ok,#PID<0.58.0>}
iex> GenServer.call(:seq, :next_number)
100
iex> GenServer.call(:seq, :next_number)
101
iex> :sys.get_status :seq
{:status, #PID<0.69.0>, {:module, :gen_server},
[["$ancestors": [#PID<0.58.0>],

"$initial_call": {Sequence.Server, :init, 1}],
:running, #PID<0.58.0>, [],
[header: 'Status for generic server seq',
data: [{'Status', :running},

{'Parent', #PID<0.58.0>},
{'Logged events', []}],

data: [{'State', "My current state is '102', and I'm happy"}]]]}

Tidying Up the Interface
As we left it, our server works but is ugly to use. Our callers have to make
explicit GenServer calls, and they have to know the registered name for our
server process. We can do better. Let’s wrap this interface in a set of three
functions in our server module: start_link, next_number, and increment_number. The
first of these calls the GenServer start_link method. As we’ll see in the next
chapter, the name start_link is a convention. start_link must return the correct
status values to OTP; as our code simply delegates to the GenServer module,
this is taken care of.

Following the definition of start_link, the next two functions are the external
API to issue call and cast requests to the running server process.

We’ll also use the name of the module as our server’s registered local name
(hence the name: __MODULE__ when we start it, and the __MODULE__ parameter
when we use call or cast).

Chapter 17. OTP: Servers • 240

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

otp-server/2/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

#####
External API

def start_link(current_number) do➤

GenServer.start_link(__MODULE__, current_number, name: __MODULE__)
end

def next_number do➤

GenServer.call __MODULE__, :next_number
end

def increment_number(delta) do➤

GenServer.cast __MODULE__, {:increment_number, delta}
end

#####
GenServer implementation

def init(initial_number) do
{ :ok, initial_number }

end

def handle_call(:next_number, _from, current_number) do
{ :reply, current_number, current_number+1 }

end

def handle_cast({:increment_number, delta}, current_number) do
{ :noreply, current_number + delta}

end

def format_status(_reason, [_pdict, state]) do
[data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]

end
end

When we run this code in IEx, it’s a lot cleaner:

$ iex -S mix
iex> Sequence.Server.start_link 123
{:ok,#PID<0.57.0>}
iex> Sequence.Server.next_number
123
iex> Sequence.Server.next_number
124
iex> Sequence.Server.increment_number 100
:ok
iex> Sequence.Server.next_number
225

This is the pattern that just about everyone uses in the Elixir world.

report erratum • discuss

Tidying Up the Interface • 241

http://media.pragprog.com/titles/elixir16/code/otp-server/2/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

I have a different view. However, it certainly isn’t mainstream, so feel free to
skip the next section if you want to avoid becoming tainted by my heresies.

Making Our Server into a Component
Earlier I said that what Elixir calls an application, most people would call a
component or a service. That’s certainly what our sequence server is: a free-
standing chunk of code that enjoyed generating successive numbers.

Despite being the canonical way of writing this, I don’t like my implementation.
It puts three things into a single source file:

• The API
• The logic of our service (adding one)
• The implementation of that logic in a server

Have another look at the code on page
241. If you didn’t know what it did, how
would you find out? Where’s the code
that does the component’s logic? (The
image gives you a hint.) It isn’t obvi-
ous, and this is just a trivial service.
Imagine working with a really complex
one, with lots of logic.

That’s why I’m experimenting with splitting the API, implementation, and
server into three separate files.

We’ll start afresh:

$ mix new sequence
$ cd sequence
$ mkdir lib/sequence
$ touch lib/sequence/impl.ex lib/sequence/server.ex
$ tree
├── README.md
├── config
│ └── config.exs
├── lib
│ ├── sequence
│ │ ├── impl.ex
│ │ └── server.ex
│ └── sequence.ex
├── mix.exs
└── test

├── sequence_test.exs
└── test_helper.exs

Chapter 17. OTP: Servers • 242

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We’ll put the API in the top-level lib/sequence.ex module, and the implementation
and server in the two lower-level modules.

The API is the public face of our component. It is simply the top half of the
previous server module:

otp-server/3/sequence/lib/sequence.ex
defmodule Sequence do

@server Sequence.Server

def start_link(current_number) do
GenServer.start_link(@server, current_number, name: @server)

end

def next_number do
GenServer.call(@server, :next_number)

end

def increment_number(delta) do
GenServer.cast(@server, {:increment_number, delta})

end

end

This forwards calls on to the server implementation:

otp-server/3/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer
alias Sequence.Impl

def init(initial_number) do
{ :ok, initial_number }

end

def handle_call(:next_number, _from, current_number) do
{ :reply, current_number, Impl.next(current_number) }

end

def handle_cast({:increment_number, delta}, current_number) do
{ :noreply, Impl.increment(current_number, delta) }

end

def format_status(_reason, [_pdict, state]) do
[data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]

end
end

Unlike the previous server, this code contains no “business logic” (which in
our case is adding either 1 or some delta to our state). Instead, it uses the
implementation module to do this:

report erratum • discuss

Making Our Server into a Component • 243

http://media.pragprog.com/titles/elixir16/code/otp-server/3/sequence/lib/sequence.ex
http://media.pragprog.com/titles/elixir16/code/otp-server/3/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

otp-server/3/sequence/lib/sequence/impl.ex
defmodule Sequence.Impl do

def next(number), do: number + 1
def increment(number, delta), do: number + delta

end

Now, you’re probably looking at this and thinking, “all that work just to
implement a counter?” And you’d be right. But this chapter isn’t about
implementing a counter. It’s all about implementing real-world servers.
Because Elixir makes it easy to bundle all the code for a server into one
module, most people do, and then they end up with some fairly highly coupled
(and hard-to-test) code.

So think of this example, but with some real, complex business logic. Imagine
how you might write it.

You’d probably start with an API, just to see what it would look like. Then
you might want to write and test some of the business logic. So go into the
implementation module and do just that. What’s more, test that code directly
as you write it: no need to run it inside a server for that.

As you progress with the implementation, you may learn things that require
changes to the overall API. Feel free.

Then, when you’re feeling good about the code, add a server module and have
the API use it.

The thing I like about this approach is that it leaves me a pure implementation
of the actual logic on my component, independent of whether I choose to
deploy it as a server. I can use (and test) the logic either as direct function
calls or indirectly via a server.

Your Turn
➤ Exercise: OTP-Servers-3

Give your stack server process a name, and make sure it is accessible by
that name in IEx.

➤ Exercise: OTP-Servers-4
Add the API to your stack module (the functions that wrap the GenServer
calls).

➤ Exercise: OTP-Servers-5
Implement the terminate callback in your stack handler. Use IO.puts to report
the arguments it receives.

Chapter 17. OTP: Servers • 244

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-server/3/sequence/lib/sequence/impl.ex
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-5
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Try various ways of terminating your server. For example, popping an
empty stack will raise an exception. You might add code that calls
System.halt(n) if the push handler receives a number less than 10. (This will
let you generate different return codes.) Use your imagination to try differ-
ent scenarios.

An OTP GenServer is just a regular Elixir process in which the message
handling has been abstracted out. The GenServer behavior defines a message
loop internally and maintains a state variable. That message loop then calls
out to various functions that we define in our server module: handle_call,
handle_cast, and so on.

We also saw that GenServer provides fairly detailed tracing of the messages
received and responses sent by our server modules.

Finally, we wrapped our message-based API in module functions, which gives
our users a cleaner interface and decouples them from our implementation.

But we still have an issue if our server crashes. We’ll deal with this in the
next chapter, when we look at supervisors.

report erratum • discuss

Making Our Server into a Component • 245

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 18

OTP: Supervisors
I’ve said it a few times now: the Elixir way says not to worry much about code
that crashes; instead, make sure the overall application keeps running.

This might sound contradictory, but really it is not.

Think of a typical application. If an unhandled error causes an exception to
be raised, the application stops. Nothing else gets done until it is restarted.
If it’s a server handling multiple requests, they all might be lost.

The issue here is that one error takes the whole application down.

But imagine that instead your application consists of hundreds or thousands
of processes, each handling just a small part of a request. If one of those
crashes, everything else carries on. You might lose the work it’s doing, but
you can design your applications to minimize even that risk. And when that
process gets restarted, you’re back running at 100%.

In the Elixir and OTP worlds, supervisors perform all of this process monitoring
and restarting.

Supervisors and Workers
An Elixir supervisor has just one purpose—it manages one or more processes.
(As we’ll discuss later, these processes can be workers or other supervisors.)

At its simplest, a supervisor is a process that uses the OTP supervisor
behavior. It is given a list of processes to monitor and is told what to do if a
process dies, and how to prevent restart loops (when a process is restarted,
dies, gets restarted, dies, and so on).

To do this, the supervisor uses the Erlang VM’s process-linking and -monitor-
ing facilities. We talked about these when we covered spawn on page 207.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

You can write supervisors as separate modules, but the Elixir style is to
include them inline. The easiest way to get started is to create your project
with the --sup flag. Let’s do this for our sequence server.

$ mix new --sup sequence➤

* creating README.md
* creating .formatter.exs
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/sequence.ex
* creating lib/sequence/application.ex
* creating test
* creating test/test_helper.exs
* creating test/sequence_test.exs

The only apparent difference is the appearance of the file lib/sequence/application.
Let’s have a look inside (I stripped out some comments…):

defmodule Sequence.Application do
@moduledoc false

use Application

def start(_type, _args) do
children = [

{Sequence.Worker, arg},
]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end
end

Our start function now creates a supervisor for our application. All we need
to do is tell it what we want supervised. Copy the second version of the
Sequence.Server module1 from the last chapter into the lib/sequence folder. Then
uncomment and change the line in the child_list to reference this module:

otp-supervisor/1/sequence/lib/sequence/application.ex
def start(_type, _args) do

children = [
{ Sequence.Server, 123},➤

]

opts = [strategy: :one_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end

1. http://media.pragprog.com/titles/elixir16/code/otp-server/2/sequence/lib/sequence/server.ex

Chapter 18. OTP: Supervisors • 248

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-supervisor/1/sequence/lib/sequence/application.ex
http://media.pragprog.com/titles/elixir16/code/otp-server/2/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Let’s look at what’s going to happen:

• When our application starts, the start function is called.

• It creates a list of child server modules. In our case, there’s just one, the
Sequence.Server. Along with the module name, we specify an argument to
be passed to the server when we start it.

• We call Supervisor.start_link, passing it the list of child specifications and a
set of options. This creates a supervisor process.

• Now our supervisor process calls the start_link function for each of its
managed children. In our case, this is the function in Sequence.Server. This
code is unchanged—it calls GenServer.start_link to create a GenServer process.

Now we’re up and running. Let’s try it:

$ iex -S mix
Compiling 2 files (.ex)
Generated sequence app
iex> Sequence.Server.increment_number 3
:ok
iex> Sequence.Server.next_number
126

So far, so good. But the key thing with a supervisor is that it is supposed to
manage our worker process. If it dies, for example, we want it to be restarted.
Let’s try that. If we pass something that isn’t a number to increment_number, the
process should die trying to add it to the current number.

iex(3)> Sequence.Server.increment_number "cat"
:ok
iex(4)> 14:22:06.269 [error] GenServer Sequence.Server terminating
Last message: {:"$gen_cast", {:increment_number, "cat"}}
State: [data: [{'State', "My current state is '127', and I'm happy"}]]
** (exit) an exception was raised:

** (ArithmeticError) bad argument in arithmetic expression
(sequence) lib/sequence/server.ex:27: Sequence.Server.handle_cast/2
(stdlib) gen_server.erl:599: :gen_server.handle_msg/5
(stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

iex(4)> Sequence.Server.next_number
123
iex(5)> Sequence.Server.next_number
124

We get a wonderful error report that shows us the exception, along with a
stack trace from the process. We can also see the message we sent that trig-
gered the problem.

report erratum • discuss

Supervisors and Workers • 249

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

But when we then ask our server for a number, it responds as if nothing had
happened. The supervisor restarted our process for us.

This is excellent, but there’s a problem. The supervisor restarted our sequence
process with the initial parameters we passed in, and the numbers started
again from 123. A reincarnated process has no memory of its past lives, and
no state is retained across a crash.

Your Turn
➤ Exercise: OTP-Supervisors-1

Add a supervisor to your stack application. Use IEx to make sure it starts
the server correctly. Use the server normally, and then crash it (try popping
from an empty stack). Did it restart? What were the stack contents after
the restart?

Managing Process State Across Restarts
Some servers are effectively stateless. If we had a server that calculated the
factors of numbers or responded to network requests with the current time,
we could simply restart it and let it run.

But our server is not stateless—it needs to remember the current number so
it can generate an increasing sequence.

All of the approaches to this involve storing the state outside of the process.
Let’s choose a simple option—we’ll write a separate process that can store
and retrieve a value. We’ll call it our stash. The sequence server can store its
current number in the stash whenever it terminates, and then we can recover
the number when we restart.

Now, we have to think about lifetimes. Our sequence server should be fairly
robust, but we’ve already found one thing that crashes it. In actuarial terms,
it isn’t the fittest process in the scheduler queue. But our stash process must
be more robust—it must outlive the sequence server, at the very least.

We have to do two things to make this happen. First, we make it as simple
as possible. The fewer moving parts in a chunk of code, the less likely it is to
go wrong.

Second, we have to arrange things so that the supervisor isolates it from
failures in the sequence server.

Let’s do the first of these things now. We’ll create a trivial server whose entire
purpose is to store a single value.

Chapter 18. OTP: Supervisors • 250

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Supervisors-1
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

otp-supervisor/2/sequence/lib/sequence/stash.ex
defmodule Sequence.Stash do

use GenServer

@me __MODULE__

def start_link(initial_number) do
GenServer.start_link(__MODULE__, initial_number, name: @me)

end

def get() do
GenServer.call(@me, { :get })

end

def update(new_number) do
GenServer.cast(@me, { :update, new_number })

end

Server implementation

def init(initial_number) do
{ :ok, initial_number }

end

def handle_call({ :get }, _from, current_number) do
{ :reply, current_number, current_number }

end

def handle_cast({ :update, new_number }, _current_number) do
{ :noreply, new_number }

end

end

Now we want to supervise it. It’ll be running alongside the sequence server:

Main Supervisor

Stash Sequence

This is the first time we’ve had two servers supervised together. So now we
have to face a question: what happens if just one of them crashes? The answer
depends on the supervision strategy we have chosen.

:one_for_one
if a server dies, the supervisor will restart it. This is the default strategy.

:one_for_all
if a server dies, all the remaining servers are first terminated, and then
the servers are all restarted.

report erratum • discuss

Supervisors and Workers • 251

http://media.pragprog.com/titles/elixir16/code/otp-supervisor/2/sequence/lib/sequence/stash.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

:rest_for_one
if a server dies, the servers that follow it in the list of children are termi-
nated, and then the dying server and those that were terminated are
restarted.

Right now we only have two servers. The stash server is supposed to be eternal,
while the sequence server might crash and need restarting. Because of this,
we know that we can’t use :one_for_all.

This leaves two choices, and both would work. If we use :one_for_one, a failing
sequence server will restart, and the stash will not be affected. If we use
:rest_for_one, the same thing will happen, but only if the sequence server follows
the stash in the list of children.

Which to choose? I vote for :rest_for_one, not because it has any different
behavior to :one_for_one, but because I feel it expresses my intent better. A
:rest_for_one supervision strategy explicitly says, “this server depends on the
health of previous servers in the list.”

Let’s add the stash and update the supervision strategy in our supervisor
startup code:

otp-supervisor/2/sequence/lib/sequence/application.ex
defmodule Sequence.Application do

@moduledoc false

use Application

def start(_type, _args) do
children = [➤

{ Sequence.Stash, 123},➤

{ Sequence.Server, nil},➤

]➤
➤

opts = [strategy: :rest_for_one, name: Sequence.Supervisor]➤

Supervisor.start_link(children, opts)
end

end

Finally, we need to change our sequence server to use this stash. For now,
we’ll have it set its state to the current value in the stash when it starts, and
have it store the value back into the stash if it crashes.

Setting the initial state simply means fetching the current value from the
stash in our sequence server’s init function. Handling the sequence server
exiting involves writing another callback, terminate. Here’s the full code:

Chapter 18. OTP: Supervisors • 252

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-supervisor/2/sequence/lib/sequence/application.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

otp-supervisor/2/sequence/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

#####
External API

def start_link(_) do➤

GenServer.start_link(__MODULE__, nil, name: __MODULE__)
end

def next_number do➤

GenServer.call __MODULE__, :next_number
end

def increment_number(delta) do➤

GenServer.cast __MODULE__, {:increment_number, delta}
end

#####
GenServer implementation

def init(_) do
{ :ok, Sequence.Stash.get() }➤

end

def handle_call(:next_number, _from, current_number) do
{ :reply, current_number, current_number+1 }

end

def handle_cast({:increment_number, delta}, current_number) do
{ :noreply, current_number + delta}

end

def terminate(_reason, current_number) do➤

Sequence.Stash.update(current_number)➤

end➤

end

Let’s try this change in IEx:

$ iex -S mix
iex> Sequence.Server.next_number
123
iex> Sequence.Server.next_number
124
iex> Sequence.Server.next_number
125
iex> Sequence.Server.increment_number "cat"
:ok
iex>
12:15:48.424 [error] GenServer Sequence.Server terminating
** (ArithmeticError) bad argument in arithmetic expression

(sequence) lib/sequence/server.ex:39: Sequence.Server.handle_cast/2

report erratum • discuss

Supervisors and Workers • 253

http://media.pragprog.com/titles/elixir16/code/otp-supervisor/2/sequence/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Last message: {:"$gen_cast", {:increment_number, "cat"}}
State: 126
iex> Sequence.Server.next_number
126
iex> Sequence.Server.next_number
127
iex>

How cool is that? The server code crashed, but was then restarted automati-
cally. And, in the process, the state was stored away in the stash and then
recovered—the sequence continued uninterrupted.

Your Turn
➤ Exercise: OTP-Supervisors-2

Rework your stack server to use a supervision tree with a separate stash
process to hold the state. Verify that it works and that when you crash
the server state is retained across a restart.

Simplifying the Stash
The sole job of our stash module is to store a value. When we look at agents,
we’ll see that they’re a perfect fit for this, and we’ll be able to simplify our code.

Worker Restart Options
So far we’ve looked at supervision from the point of view of the supervisor. In
particular, we’ve seen how the supervision strategy tells the supervisor how
to deal with the death of a child process.

There’s a second level of configuration that applies to individual workers. The
most commonly used of these is the :restart option.

Previously we said that a supervisor strategy (such as :one_for_all) is invoked
when a worker dies. That’s not strictly true. Instead, the strategy is invoked
when a worker needs restarting. And the conditions when a worker should
be restarted are dictated by its restart: option:

:permanent
This worker should always be running—it is permanent. This means that
the supervision strategy will be applied whenever this worker terminates,
for whatever reason.

:temporary
This worker should never be restarted, so the supervision strategy is
never applied if this worker dies.

Chapter 18. OTP: Supervisors • 254

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Supervisors-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

:transient
It is expected that this worker will at some point terminate normally, and
this termination should not result in a restart. However, should this worker
die abnormally, then it should be restarted by running the supervision
strategy.

The simplest way to specify the restart option for a worker is in the worker
module. You add it to the use GenServer (or use Supervisor) line:

defmodule Convolver do
use GenServer, restart: :transient
. . .

A Little More Detail
You don’t have to know the information in this section first time around, but
as someone always asks….

We’ve seen that you start a supervisor by passing it a list of children. Just
what is that list?

At the very lowest level, it is a list of child specifications. A child spec is an
Elixir map. It describes which function to call to start the worker, how to shut
the worker down, the restart strategy, the worker type, and any modules
apart from the main module that form part of the worker.

You can create a child spec map using the Supervisor.child_spec/2 function.

At the next level up, you can specify a worker by giving its module name (or
a tuple containing the module and the initial arguments). In this case, the
supervisor assumes you’ve implemented a child_spec function in that module,
and calls that function to get the specification.

Going up one more level, when you add the line use GenServer to a server module,
Elixir will define a default child_spec function in that module. This function by
default returns a map that tells the supervisor that the start function will be
start_link and that the restart strategy will be :permanent. You can override these
defaults with the options you give use GenServer.

In practice, the option you’ll change the most will be :restart. Although :permanent
is a good default for long-running servers, it won’t work for servers that do a
job and then exit. These types of servers should have a restart value of :transient.

Supervisors Are the Heart of Reliability
Think about our previous example; it was both trivial and profound. It was
trivial because there are many ways of achieving some kind of fault tolerance

report erratum • discuss

Supervisors Are the Heart of Reliability • 255

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

with a library that returns successive numbers. But it was profound because
it is a concrete representation of the idea of building rings of confidence in
our code. The outer ring, where our code interacts with the world, should be
as reliable as we can make it. But within that ring there are other, nested
rings. And in those rings, things can be less than perfect. The trick is to
ensure that the code in each ring knows how to deal with failures of the code
in the next ring down.

And that’s where supervisors come into play. In this chapter we’ve seen only
a small fraction of supervisors’ capabilities. They have different strategies for
dealing with the termination of a child, different ways of terminating children,
and different ways of restarting them. There’s plenty of information online
about using OTP supervisors.

But the real power of supervisors is that they exist. The fact that you use
them to manage your workers means you are forced to think about reliability
and state as you design your application. And that discipline leads to appli-
cations with very high availability—in Programming Erlang (2nd edition)
[Arm13], Joe Armstrong says OTP has been used to build systems with
99.9999999% reliability. That’s nine nines. And that ain’t bad.

(In case you were wondering, that equates to a complete application outage
of roughly 1 second every 30 years. I don’t know how you’d even measure
that, which makes me a little suspicious….)

There’s one more level in our lightning tour of OTP—the application. But
before we look at that, let’s use what we learned so far and build some real-
world code.

Chapter 18. OTP: Supervisors • 256

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 19

A More Complex Example
When I first used Elixir, I struggled with how to organize my applications.
When should I use servers? How do supervisors fit in? Even basic questions
such as “how many applications should I write?” made me nervous.

Frankly, I’m still thinking about these questions, three years later, in the
same way I’m still thinking about object-oriented system design after 30 years
of doing it. But, on the Elixir front, I have come up with an approach that
helps me think through these issues.

It isn’t rocket science. I just ask myself these five questions:

• What is the environment and what are its constraints?
• What are the obvious focal points?
• What are the runtime characteristics?
• What do I protect from errors?
• How do I get this thing running?

What I’m going to show in this chapter is just my ad hoc approach. Please
don’t take it as any kind of “methodology.” But if, like me, you sometimes feel
overwhelmed when designing a new Elixir system, these steps might help.

Let’s write a simple application to show you what I mean.

Introduction to Duper
I have loads of duplicate files littering my computers. In an effort to tame this,
let’s write a duplicate-file finder. Well call it Duper (so we can later create a paid
version called SuperDuper). It’ll work by scanning all the files in a directory
tree, calculating a hash for each. If two files have the same hash, we’ll report
them as duplicates.

Let’s start asking the questions.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Q1: What is the environment and what are its constraints?
We’re going to run this on a typical computer. It’ll have roughly two orders
of magnitude more file storage than main memory. Files will range in size
from 100 to 1010 bytes, and there will be roughly 107 of them.

What this means:

We need to allow for the fact that although we have to load files into memory
to determine their hashes, it is possible we won’t have enough memory to
load the largest files in whole. We definitely will not be able to process all the
files at once.

It also means that our design will need to cater to both big and small files.
Big files will take more time to read into memory than small files, and they
will also take longer to hash.

Q2: What are the focal points?
A focal point represents a responsibility of the application. By considering the
focal points now, we can start to reduce coupling in the application as a whole:
each focal point can be tightly coupled internally but loosely coupled to the
others. This coupling can be both structural (for example, the representation of
data) and temporal (for example, the sequence in which things will happen).

In Duper, we can fairly easily identify some key focal points:

• We need to have a place where we collect results. We are calculating a
hash value for each file, so this results store will need to hold all of these.
As we are looking for duplicate hashes, it would make sense for this to
be some kind of key/value store internally, where the key is the hash and
the value is a list of all files with that hash. However, this is an implemen-
tation detail, and the implementation shouldn’t leak through our API.

• We need to have something that can traverse the filesystem, returning
each path just once.

• We need to have something that can take a path and calculate the hash of
the corresponding file. Because an individual file may be too big to fit in
memory, we’ll have to read it in chunks, calculating the hash incrementally.

• Because we know we will need to be processing multiple files concurrently
in order to maximize our use of the CPU and IO bandwidth, we’ll need
something that orchestrates the overall process.

This list may well change as we start to write code, but it’s good enough to
get us to the next step.

Chapter 19. A More Complex Example • 258

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

What this means:

At the very least, each focus we identify is an Elixir module. My experience
is that it’s wise to assume that most if not all are going to end up being servers.
I’m also coming to believe that many should even be separate Elixir applica-
tions, but that’s not something I’m going to dig into here.

Our code will be structured into four servers. Although we could do it with
fewer, using four means we can have specific characteristics for each. The
four are as follows:

• The Results. This is the most important server, as it holds the results of
the scanning in memory. We need it to be reliable, so we won’t put much
code in it.

• The PathFinder. This is responsible for returning the paths to each file in
the directory tree, one at a time.

• The Worker. This asks the PathFinder for a path, calculates the hash of
the resulting file’s contents, and passes the result to the gatherer.

• The Gatherer. This is the server that both starts the ball rolling and
determines when things have completed. When they do, it fetches the
results and reports on them.

Q3: What are the runtime characteristics?
Our application is going to spend the vast majority of its time in the workers,
as this is where we read the files and calculate the hash values. Our goal is
to keep both the processors and the IO bus as busy as possible in order to
maximize performance.

If we have just one worker, then it would read a file, hash it, read the next,
hash it, and so on. We’d alternate between being IO bound and CPU bound.
This doesn’t come close to maximizing our performance.

On the other hand, if we had one worker for each file, then they could be
reading and hashing at the same time. However, we’d run out of memory on
our machine, as we’d effectively be trying to load our filesystem into memory.

The sweet spot lies in between.

One approach is to create n workers, and then divide the work equally between
them. This is the typical push model: plan the work up front and let it execute.
The problem with this approach is that it assumes that each file is about the
same size. If that’s not the case (and on my machine it certainly isn’t), then

report erratum • discuss

Introduction to Duper • 259

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

it would be possible to give one worker mostly small files and another mostly
large files. The first would finish early, and would then sit idle while the second
chewed through its workload.

The approach I prefer in this scenario is what I call hungry consumer. It’s a pull
model, where each worker asks for the next thing to do, processes it, and then
asks for more work. In this scheme a worker that has a small file to process will
get it done quickly, then ask for more work. One with a bigger file will take more
time. There’ll never be an idle worker until we get to the very last files.

The following sequence diagram shows how messages flow in this system.
Notice that we have a mixture of synchronous messaging (the pairs of arrows
going in opposite directions) and asynchronous messaging.

GathererPathFinder ResultsWorker

next_path

path

{path, hash}
{path, hash}

next_path

path
{path, hash}

{path, hash}
next_path

nil
:done

get_results

results

Q4: What do I protect from errors?
This is where we get to be pragmatic!

In an ideal world, nothing will fail, and everything should be protected from
errors.

The real world is different—we can only do so much protecting. How much
do we need? It depends. If we’re writing software for a pacemaker, then I’d
suggest the vast majority of the implementation effort should go into error
protection. If we’re writing a duplicate-file finder, then not so much.

We can assume that running our finder across 500 GB of files will take min-
utes, not seconds. That means that if we have a failure reading one file, we

Chapter 19. A More Complex Example • 260

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

don’t want to stop the whole application and lose the work done so far—it is
good enough to continue ignoring that file.

What this means:

We want to protect the accumulating results, but we’re not as worried about
the individual workers—workers can simply restart on failure and process
the next file.

Q5. How do I get this thing running?
Sequential programs are easy to start: you just run them. Applications that
have many moving parts are more complex: you have to make sure that the
various servers are started so that if server A needs to call server B, then B
is running before A makes that call.

How should our four servers be started?

The sequence diagram tells us most of the answer.

• Worker depends on PathFinder and Gatherer.
• Gatherer depends on Results.
• Pathfinder and Results depend on nothing.

What this means:

Pathfinder and Results should be started first, followed by Gatherer, and then
by the workers.

In terms of implementation, this is fairly straightforward. We simply list the
servers in this order as children of a supervisor, and the supervisor will make
sure each child is running before starting the next.

But we also know that we will have multiple workers. Rather than try to find
a way of creating them up at the top level, we’ll add something new: a subsu-
pervisor. This subsupervisor is responsible for just the pool of workers.

Adding this supervisor opens up an interesting possibility. If all the children
of a supervisor are the same, then that supervisor can be used to create them
dynamically. Our gatherer server could create a pool of workers when it kicks
off the application. This would let us experiment with the effect the number
of workers has on elapsed time.

Our new dependency structure looks like this:

• Worker depends on PathFinder and Gatherer.
• Gatherer depends on Results and the worker supervisor.
• Pathfinder and Results depend on nothing.

report erratum • discuss

Introduction to Duper • 261

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This gives us a supervision structure that looks like this:

Worker Supervisor GathererPathFinderResults

Worker Worker Worker• • •

Duper Supervisor

Of course, all this is just theory. Let’s start getting some feedback by writ-
ing code.

The Duper Application
We’ll start by creating a supervised application:

$ mix new --sup duper
$ cd duper
$ git init
$ git add .
$ git commit -a -m 'raw application'

Time to start writing servers.

The Results Server
The results server wraps an Elixir map. When it starts, it sets its state to an
empty map. The keys of this map are hash values, and the values are the list
of one of more paths whose files have that hash.

The server provides two API calls: one to add a hash/path pair to the map,
the second to retrieve entries that have more than one path in the value (as
these are two duplicate files).

This is similar to the code we wrote for the sequence stash:

duper/1/duper/lib/duper/results.ex
defmodule Duper.Results do

use GenServer

@me __MODULE__

Chapter 19. A More Complex Example • 262

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/results.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

API

def start_link(_) do
GenServer.start_link(__MODULE__, :no_args, name: @me)

end

def add_hash_for(path, hash) do
GenServer.cast(@me, { :add, path, hash })

end

def find_duplicates() do
GenServer.call(@me, :find_duplicates)

end

Server

def init(:no_args) do
{ :ok, %{} }

end

def handle_cast({ :add, path, hash }, results) do
results =
Map.update(

results, # look in this map
hash, # for an entry with key
[path], # if not found, store this value
fn existing -> # else update with result of this fn

[path | existing]
end)

{ :noreply, results }
end

def handle_call(:find_duplicates, _from, results) do
{

:reply,
hashes_with_more_than_one_path(results),
results

}
end

defp hashes_with_more_than_one_path(results) do
results
|> Enum.filter(fn { _hash, paths } -> length(paths) > 1 end)
|> Enum.map(&elem(&1, 1))

end

end

The only mild magic in this code is the use of Map.update/4. This wonderful
function takes a map, a key, an initial value, and a function. If the key is not
present in the map, then a new map is returned with that key and initial
value added. If the key is present, then the corresponding value is passed to
the function, and whatever the function returns becomes the updated value

report erratum • discuss

The Duper Application • 263

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

in the returned map. In our case, we’re using it to create a single-element
path list the first time a hash is encountered, and then to add paths to that
list on duplicates.

We’ll add this server to the list of top-level children in application.ex.

def start(_type, _args) do
children = [

Duper.Results,➤

]

opts = [strategy: :one_for_one, name: Duper.Supervisor]
Supervisor.start_link(children, opts)

end

This code is easy to test:

duper/1/duper/test/duper/results_test.exs
defmodule Duper.ResultsTest do

use ExUnit.Case
alias Duper.Results

test "can add entries to the results" do

Results.add_hash_for("path1", 123)
Results.add_hash_for("path2", 456)
Results.add_hash_for("path3", 123)
Results.add_hash_for("path4", 789)
Results.add_hash_for("path5", 456)
Results.add_hash_for("path6", 999)

duplicates = Results.find_duplicates()

assert length(duplicates) == 2

assert ~w{path3 path1} in duplicates
assert ~w{path5 path2} in duplicates

end

end

$ mix test
...

Finished in 0.05 seconds
1 doctest, 2 tests, 0 failures

Structuring Tests

I like the directory structure of my tests to follow the same struc-
ture as the code it is testing. Because results.ex is in lib/duper/results.ex,
I put the test in a subdirectory of test, also called duper.

Chapter 19. A More Complex Example • 264

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/test/duper/results_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The PathFinder Server
Our next server is responsible for returning all the file paths in a filesystem
tree, one at a time.

Elixir doesn’t have a filesystem-traversal API built in, so we look on ‘hex.pm‘ and
find dir_walker,1 which we just need to wrap in a trivial GenServer whose state
is the directory walker’s PID. So we add the dependency to our mix.exs file:

duper/1/duper/mix.exs
defp deps do

[
dir_walker: "~> 0.0.7",

]
end

and code the server in lib/duper/path_finder.ex:

duper/1/duper/lib/duper/path_finder.ex
defmodule Duper.PathFinder do

use GenServer

@me PathFinder

def start_link(root) do
GenServer.start_link(__MODULE__, root, name: @me)

end

def next_path() do
GenServer.call(@me, :next_path)

end

def init(path) do
DirWalker.start_link(path)

end

def handle_call(:next_path, _from, dir_walker) do
path = case DirWalker.next(dir_walker) do

[path] -> path
other -> other

end

{ :reply, path, dir_walker }
end

end

Finally we add the pathfinder server to our application’s list of children:

1. https://hex.pm/packages/dir_walker

report erratum • discuss

The Duper Application • 265

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/mix.exs
http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/path_finder.ex
https://hex.pm/packages/dir_walker
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def start(_type, _args) do
children = [

Duper.Results,
{ Duper.PathFinder, "." },

]

opts = [strategy: :one_for_one, name: Duper.Supervisor]
Supervisor.start_link(children, opts)

end

Notice we used a tuple to specify the PathFinder server. That’s because it
requires us to pass in the root of the tree to be searched as a parameter. Here,
I’m using the current working directory, “.”, which will work well for playing
with the code.

The Worker Supervisor
When we investigated how we’d get things started, on page 261, we realized
that we’d need a different supervisor for our workers. This supervisor will
only manage the worker servers, and it will let us add servers dynamically,
after the application has started.

The simplest way to do this is to use a DynamicSupervisor. This type of super-
visor allows you to create an arbitrary number of workers at runtime. (A
DynamicSupervisor encapsulates what used to be the :simple_one_for_one strat-
egy in regular supervisors. You can still do it the old way, but DynamicSuper-
visors let you express your intent better.)

Let’s create the supervisor (in lib/duper/worker_supervisor.ex) and then see how it
works.

duper/1/duper/lib/duper/worker_supervisor.ex
defmodule Duper.WorkerSupervisor do

use DynamicSupervisor

@me WorkerSupervisor

def start_link(_) do
DynamicSupervisor.start_link(__MODULE__, :no_args, name: @me)

end

def init(:no_args) do
DynamicSupervisor.init(strategy: :one_for_one)

end

def add_worker() do
{:ok, _pid} = DynamicSupervisor.start_child(@me, Duper.Worker)

end
end

Chapter 19. A More Complex Example • 266

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/worker_supervisor.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The supervisor is just a regular Elixir module. It starts with use DynamicSupervisor,
which gives it its super(visor) powers.

The start_link function works the same in a supervisor as it does in a GenServer:
it is called to start the server containing the supervisor code. Inside this
server, Elixir automatically calls the init callback, which in turn initializes the
supervisor code itself. This initialization receives the supervisor options. In
the case of a dynamic supervisor, this can only be strategy: one_for_one.

Later, we can call the add_worker function. This calls the supervisor, telling it
to add another child based on the child specification we pass. In this case,
we tell it to start Duper.Worker. A new server is created for each call, and these
servers run in parallel. As a result, each time add_worker is called, a new
Duper.Worker instance is spawned.

Note: One side effect of the fact that the same module is run in multiple child
servers is we can’t give the children a name in their start_link function. If we did,
then there’d be multiple servers with the same name, which Elixir doesn’t allow.

Let’s remember to add the supervisor to the list of top-level children.

def start(_type, _args) do
children = [

Duper.Results,
{ Duper.PathFinder, "." },
Duper.WorkerSupervisor,

]

opts = [strategy: :one_for_one, name: Duper.Supervisor]
Supervisor.start_link(children, opts)

end

Thinking About Supervision Strategies
Whenever I add a child to a supervisor’s list, I stop and think about the
supervision strategy: how do I want the failure of a child managed by this
supervisor to affect the other children?

If the results server fails, then all is lost, and we have to restart everything.
The same applies to the pathfinder: although we could in theory work out how
far into the folder structure we were if it crashed, and restart from there, in
practice that would be difficult, so for now we treat a failure of the pathfinder
as a failure of the application.

What about the worker supervisor? Here we have to be careful. The worker
supervisor handles the actual worker processes. If one of these fails, the
worker supervisor simply restarts it and the application continues. But the

report erratum • discuss

The Duper Application • 267

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

failure of a worker does not mean that the worker supervisor itself has failed.
In fact, in the very unlikely event that the worker supervisor fails, it’s probably
best to assume we can’t continue and stop the application.

So, for all three children we have on this top-level supervisor, a failure means
the application should stop. The strategy that enforces this is :one_for_all, so
we change our code accordingly.

def start(_type, _args) do
children = [

Duper.Results,
{ Duper.PathFinder, "." },

Duper.WorkerSupervisor,
]

opts = [strategy: :one_for_all, name: Duper.Supervisor]➤

Supervisor.start_link(children, opts)
end

That’s all we’re going to do on the worker side of things for now. Let’s write
the gatherer, and then circle back and implement the actual worker.

The Gatherer Server
Looking at the sequence diagram on page 260, we can see that the gatherer is
invoked by the workers. Each worker can tell the gatherer that it has run out
of work (by calling done()) or it can give it the results of hashing a file.

The gatherer has one more function, not shown in the diagram. It is respon-
sible for starting the workers, and it is responsible for determining when the
application has finished processing the files.

To do this, it maintains a simple state: the number of worker servers that are
currently running.

Knowing that, we can write most of the gatherer server:

duper/1/duper/lib/duper/gatherer.ex
defmodule Duper.Gatherer do

use GenServer

@me Gatherer

api

def start_link(worker_count) do
GenServer.start_link(__MODULE__, worker_count, name: @me)

end

def done() do
GenServer.cast(@me, :done)

end

Chapter 19. A More Complex Example • 268

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/gatherer.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def result(path, hash) do
GenServer.cast(@me, { :result, path, hash })

end

server

def init(worker_count) do
{ :ok, worker_count }

end
def handle_cast(:done, _worker_count = 1) do

report_results()
System.halt(0)

end

def handle_cast(:done, worker_count) do
{ :noreply, worker_count - 1 }

end

def handle_cast({:result, path, hash}, worker_count) do
Duper.Results.add_hash_for(path, hash)
{ :noreply, worker_count }

end

defp report_results() do
IO.puts "Results:\n"
Duper.Results.find_duplicates()
|> Enum.each(&IO.inspect/1)

end
end

See how the implementation of :done keeps track of the number of running
workers? As each signals it is done the count is decremented, until the last
:done is received, where we report the results and exit.

We could try something like this:

def init(worker_count) do
1..worker_count
|> Enum.each(fn _ -> Duper.WorkerSupervisor.add_worker() end)
{ :ok, worker_count }

end

However, this won’t work, and it won’t work in a fairly ugly way.

Remember when we described how supervisors started children in order?
They wait for each child to initialize itself before starting the next.

In the preceding code, we’re still initializing the gatherer when we start adding
workers. The workers may start running before the initialization of the gath-
erer finishes. In this case, messages they send to it may well get lost. If you’re
only traversing a small filesystem tree, it is even possible that a worker might

report erratum • discuss

The Duper Application • 269

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

signal :done before the gatherer is ready, in which case the system will hang,
because it will never know that it has finished.

The answer to this mess is to follow a simple rule: when you’re initializing a
server, don’t interact with anything that uses that server.

So how do we get the workers running? The answer will be familiar to anyone
who has written JavaScript—we arrange for a callback into our gatherer
server after initialization is complete:

def init(worker_count) do
Process.send_after(self(), :kickoff, 0)➤

{ :ok, worker_count }
end

def handle_info(:kickoff, worker_count) do➤

1..worker_count➤

|> Enum.each(fn _ -> Duper.WorkerSupervisor.add_worker() end)➤

{ :noreply, worker_count }➤

end➤

Here the init function uses send_after to tell the runtime to queue a message to
this server immediately (that is, after waiting 0 ms). When the init function
exits, the server is then free to pick up this message, which triggers the han-
dle_info callback, and the workers get started.

So, now that the gatherer code is ready, we just have to remember to start it:

duper/1/duper/lib/duper/application.ex
def start(_type, _args) do

children = [
Duper.Results,

{ Duper.PathFinder, "/Users/dave/Pictures" },
Duper.WorkerSupervisor,

{ Duper.Gatherer, 1 },
]

opts = [strategy: :one_for_all, name: Duper.Supervisor]
Supervisor.start_link(children, opts)

end

What About the Workers?
Referring back one last time to the sequence diagram on page 260, we can see
that the workers are a little strange: they have no incoming API. All they do
is ask for a path, compute the hash of the corresponding file, and send the
hash to the gatherer. At some point, there are no paths left, so they then send
a :done notification to the gatherer instead.

Chapter 19. A More Complex Example • 270

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/application.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Here’s the code:

duper/1/duper/lib/duper/worker.ex
defmodule Duper.Worker do

use GenServer, restart: :transient

def start_link(_) do
GenServer.start_link(__MODULE__, :no_args)

end

def init(:no_args) do
Process.send_after(self(), :do_one_file, 0)
{ :ok, nil }

end

def handle_info(:do_one_file, _) do
Duper.PathFinder.next_path()
|> add_result()

end

defp add_result(nil) do
Duper.Gatherer.done()
{:stop, :normal, nil}

end

defp add_result(path) do
Duper.Gatherer.result(path, hash_of_file_at(path))
send(self(), :do_one_file)
{ :noreply, nil }

end

defp hash_of_file_at(path) do
File.stream!(path, [], 1024*1024)
|> Enum.reduce(

:crypto.hash_init(:md5),
fn (block, hash) ->

:crypto.hash_update(hash, block)
end)

|> :crypto.hash_final()
end

end

Notice we use the same trick in the init() function to call back into ourselves,
invoking handle_info(:do_one_file,_). This function asks the pathfinder for the next
file, and then passes the returned value to add_result().

If the pathfinder returns nil, it has run out of files, so we tell the gatherer that
we’re done. Otherwise, we call a private function to calculate the hash of the
file contents, pass the path and the hash to the gatherer, and then send
ourselves another :do_one_file message, causing the whole process to repeat.

report erratum • discuss

The Duper Application • 271

http://media.pragprog.com/titles/elixir16/code/duper/1/duper/lib/duper/worker.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Why Can’t We Just Write a Looping Function?

We can implement a loop in Elixir using a recursive function call.
But the worker server doesn’t do this. Instead, it sends itself a
message and then exits after processing each file.

The reason is that the Elixir runtime won’t let any one invocation
of a server hog the CPU forever. Instead it sets a timeout on each
call or cast into a GenServer (by default 5 seconds). If the call or
cast handler has not returned in that time, the runtime assumes
something has gone wrong and terminates the server.

Processing a million files in a loop will take more than 5 seconds.
So we instead just process one file per entry into the server, and
then queue up another message to process the next on a fresh
entry. The result: no timeouts.

One other thing to note—we flagged this server as being transient:

use GenServer, restart: :transient

This means that the supervisor will not restart it if it terminates normally,
but will restart it if it fails.

But Does It Work?
Let’s see where we are. We’re implemented four GenServers and two supervi-
sors. When the application starts, it will start the top-level supervisor, which
in turn starts Results, PathFinder, WorkerSupervisor, and Gatherer.

When Gatherer starts (and it will start last), it tells the worker supervisor to
start a number of workers. When each worker starts, it gets a path to process
from PathFinder, hashes the corresponding file, and passes the result to
Gatherer, which stores the path and the hash in the Results server. When
there are no more files to process, each worker sends a :done message to the
gatherer. When the last worker is done, the gatherer reports the results.

Everything seems to be wired up. Let’s try it:

$ mix run
Compiling 7 files (.ex)
Generated duper app
$

Hmm…that’s strange. No output.

Chapter 19. A More Complex Example • 272

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The first time this happened to me, I wasted most of a day working it out.
And the problem is obvious once you know what’s happening.

The mix run command runs your application. Once it has it running, mix exits:
mission accomplished.

But your application never finished; it just got started and mix went away.
We have to tell mix not to exit.

$ mix run --no-halt
Results:

["./_build/dev/lib/dir_walker/.compile.elixir_scm",
"./_build/test/lib/dir_walker/.compile.elixir_scm"]

["./_build/dev/lib/dir_walker/.compile.elixir",
"./_build/test/lib/dir_walker/.compile.elixir"]

["./_build/dev/lib/dir_walker/.compile.xref",
"./_build/dev/lib/duper/.compile.xref",
"./_build/test/lib/dir_walker/.compile.xref"]

["./deps/dir_walker/.fetch",
"./_build/dev/lib/dir_walker/.compile.lock",
"./_build/dev/lib/dir_walker/.compile.fetch",
"./_build/test/lib/dir_walker/.compile.lock",
"./_build/test/lib/dir_walker/.compile.fetch"]

["./_build/dev/lib/dir_walker/ebin/dir_walker.app",
"./_build/test/lib/dir_walker/ebin/dir_walker.app"]

$

Much better. Even inside our Elixir project we have duplicated files, mostly
between the test and dev environments.

Let’s Play with Timing
Our lib/duper/application.ex file contains parameters that tell the app where to
search and how many workers to use when searching. (We’ll see in the next
chapter how to move those values out of code and onto the command line.)

Let’s change these parameters. My ~/Pictures folder used 30 GB to store about
6,000 old pictures from when I used iPhoto. Let’s look for duplicates in that
folder with one worker, two workers, and so on, recording elapsed time.

Here are the parameters for using a single worker:

children = [
Duper.Results,

{ Duper.PathFinder, "/Users/dave/Pictures" },
Duper.WorkerSupervisor,

{ Duper.Gatherer, 1 },
]

report erratum • discuss

But Does It Work? • 273

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Run it:

$ time mix run --no-halt >dups
87.57 real 58.81 user 23.44 sys

$ wc -l dups
1869 dups

We found 1,900-odd duplicated photos in about 88 seconds. The Elixir runtime
used about 98% of one of my cores during this process.

Let’s try with two workers. Alter application.ex, and run this:

$ time mix run --no-halt >dups
48.58 real 58.33 user 17.98 sys

Nice! It ran almost twice as fast. It means that I’m successfully overlapping
the IO and the hashing.

To cut a long story short, here are the results for 1..5, 10, and 50 workers.

workers elapsed (S) user (S) sys (S)

1 87.57 58.81 23.44

2 48.58 58.33 17.98

3 39.11 70.32 25.89

4 35.55 72.11 27.86

5 34.66 72.80 28.09

10 35.07 72.10 29.26

50 35.70 70.47 32.36

El
ap

se
d

tim
e

(s)

0

30

60

90

1 2 3 4 5

�1

As my machine has only two processors (four cores, but two are just hyper-
threading), that’s about as good as I could expect.

Planning Your Elixir Application
This book is about thinking differently. We started by thinking about the code
we write, and how a function style with immutable data forces us to think in
terms of transformations.

In the last few chapters we’ve come across another dimension of this: thinking
about how we structure our application. Our code is no longer monolithic.
Instead we think about independent, interacting servers. (You might even call
them services.)

This shift in thinking is a difficult one, because it involves both conceptual
adjustments and practical deployment issues. It is something you’ll become
more comfortable with over time. But remember to ask yourself the five
questions, and your path should be easier:

Chapter 19. A More Complex Example • 274

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

• What is the environment and what are its constraints?
• What are the obvious focal points?
• What are the runtime characteristics?
• What do I protect from errors?
• How do I get this thing running?

Next Up
We have an application, but it doesn’t really work well for us: things are hard-
coded. Let’s investigate a little more about what it means to be an application
in the next chapter.

report erratum • discuss

Next Up • 275

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 20

OTP: Applications
So far in our quick tour of Elixir and OTP we’ve looked at server processes
and the supervisors that monitor them. There’s one more stage in our jour-
ney—the application.

This Is Not Your Father’s Application
Because OTP comes from the Erlang world, it uses Erlang names for things.
And unfortunately, some of these names are not terribly descriptive. The
name application is one of these. When most of us talk about applications,
we think of a program we run to do something—maybe on our computer or
phone, or via a web browser. An application is a self-contained whole.

But in the OTP world, that’s not the case. Instead, an application is a bundle
of code that comes with a descriptor. That descriptor tells the runtime what
dependencies the code has, what global names it registers, and so on. In fact,
an OTP application is more like a dynamic link library or a shared object than
a conventional application.

It might help to see the word application in your head but pronounce it com-
ponent or service.

For example, back when we were fetching GitHub issues using the HTTPoison
library, what we actually installed was an independent application containing
HTTPoison. Although it looked like we were just using a library, mix automat-
ically loaded the HTTPoison application. When we then started it, HTTPoison
in turn started a couple of other applications that it needed (SSL and Hackney),
which in turn kicked off their own supervisors and workers. And all of this
was transparent to us.

I’ve said that applications are components, but some applications are at the
top of the tree and are meant to be run directly.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

In this chapter we’ll look at both types of application component (see what I
did there?). In reality they’re virtually the same, so let’s cover the common
ground first.

The Application Specification File
You probably noticed that every now and then mix will talk about a file called
name.app, where name is your application’s name.

This file is called an application specification and is used to define your
application to the runtime environment. Mix creates this file automatically
from the information in mix.exs combined with information it gleans from
compiling your application.

When you run your application this file is consulted to get things loaded.

Your application does not need to use all the OTP functionality—this file will
always be created and referred to. However, once you start using OTP
supervision trees, stuff you add to mix.exs will get copied into the .app file.

Turning Our Sequence Program into an OTP Application
So, here’s the good news. The application on page 247 is already a full-blown
OTP application. When mix created the initial project tree, it added a supervi-
sor (which we then modified) and enough information to our mix.exs file to get
the application started. In particular, it filled in the application function:

def application do
[

mod: {
Sequence.Application, []

},
extra_applications: [:logger],

]
end

This says that the top-level module of our application is called Sequence. OTP
assumes this module will implement a start function, and it will pass that
function an empty list as a parameter.

In our previous version of the start function, we ignored the arguments and
instead hard-wired the call to start_link to pass 123 to our application. Let’s
change that to take the value from mix.exs instead. First, change mix.exs to pass
an initial value (we’ll use 456):

Chapter 20. OTP: Applications • 278

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def application do
[

mod: {
Sequence.Application, 456

},
extra_applications: [:logger],

]
end

Then change the application.ex code to use this passed-in value:

otp-app/sequence/lib/sequence/application.ex
defmodule Sequence.Application do

@moduledoc false

use Application

def start(_type, initial_number) do➤

children = [
{ Sequence.Stash, initial_number},➤

{ Sequence.Server, nil},
]

opts = [strategy: :rest_for_one, name: Sequence.Supervisor]
Supervisor.start_link(children, opts)

end

end

We can check that this works:

$ iex -S mix
Compiling 5 files (.ex)
Generated sequence app

iex> Sequence.Server.next_number
456

Let’s look at the application function again.

The mod: option tells OTP the module that is the main entry point for our app.
If our app is a conventional runnable application, then it will need to start
somewhere, so we’d write our kickoff function here. But even pure library
applications may need to be initialized. (For example, a logging library may
start a background logger process or connect to a central logging server.)

For the sequence app, we tell OTP that the Sequence module is the main entry
point. OTP will call this module’s start function when it starts the application.
The second element of the tuple is the parameter to pass to this function. In
our case, it’s the initial number for the sequence.

report erratum • discuss

Turning Our Sequence Program into an OTP Application • 279

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence/lib/sequence/application.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

There’s a second option we’ll want to add to this.

The registered: option lists the names that our application will register. We can
use this to ensure each name is unique across all loaded applications in a
node or cluster. In our case, the sequence server registers itself under the
name Sequence.Server, so we’ll update the configuration to read as follows:

otp-app/sequence/mix.exs
def application do

[
mod: {
Sequence.Application, 456

},
registered: [
Sequence.Server,

],
extra_applications: [:logger],

]
end

Now that we’ve done the configuring in mix, we run mix compile, which both
compiles the app and updates the sequence.app application specification file
with information from mix.exs. (The same thing happens if we run mix using
iex -S mix.)

$ mix compile
Compiling 5 files (.ex)
Generated sequence app➤

Mix tells us it has created a sequence.app file, but where is it? You’ll find it
tucked away in _build/dev/lib/sequence/ebin. Although a little obscure, the directory
structure under _build is compatible with Erlang’s OTP way of doing things.
This makes life easier when you release your code. You’ll notice that the path
has dev in it—this keeps things you’re doing in development separate from
other build products.

Let’s look at the sequence.app that was generated.

otp-app/sequence/_build/dev/lib/sequence/ebin/sequence.app
{application,sequence,

[{applications,[kernel,stdlib,elixir,logger]},
{description,"sequence"},
{modules,['Elixir.Sequence','Elixir.Sequence.Application',

'Elixir.Sequence.Server','Elixir.Sequence.Stash']},
{vsn,"0.1.0"},
{mod,{'Elixir.Sequence.Application',456}},
{registered,['Elixir.Sequence.Server']},
{extra_applications,[logger]}]}.

Chapter 20. OTP: Applications • 280

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence/mix.exs
http://media.pragprog.com/titles/elixir16/code/otp-app/sequence/_build/dev/lib/sequence/ebin/sequence.app
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This file contains an Erlang tuple that defines the app. Some of the information
comes from the project and application section of mix.exs. Mix also automatically
added a list of the names of all the compiled modules in our app (the .beam
files) and a list of the apps our app depends on (kernel, stdlib, and elixir). That’s
pretty smart.

More on Application Parameters
In the previous example, we passed the integer 456 to the application as an
initial parameter. Although that’s valid(ish), we really should have passed in
a keyword list instead. That’s because Elixir provides a function, Applica-
tion.get_env, to retrieve these values from anywhere in our code. So we probably
should have set up mix.exs with

def application do
[

mod: { Sequence, [] },
env: [initial_number: 456],
registered: [Sequence.Server]

]
end

and then accessed the value using get_env. We call this with the application
name and the name of the environment parameter to fetch:

defmodule Sequence do
use Application

def start(_type, _args) do
Sequence.Supervisor.start_link(Application.get_env(:sequence, :initial_number))

end

end

Your call.

Supervision Is the Basis of Reliability

Let’s briefly recap. In that last example, we ran our OTP sequence application
using mix. Looking at just our code, we see that a supervisor process and two
worker processes got started. These were knitted together so our system con-
tinued to run with no loss of state even if the worker that we talked to crashed.
And any other Erlang process on this node (including IEx itself) can talk to
our sequence application and enjoy its stream of freshly minted integers.

You probably noticed that the start function takes two parameters. The second
corresponds to the value we specified in the mod: option in the mix.exs file (in

report erratum • discuss

Supervision Is the Basis of Reliability • 281

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

our case, the counter’s initial value). The first parameter specifies the status
of the restart, which we’re not going to get into, because…

Your Turn
➤ Exercise: OTP-Applications-1

Turn your stack server into an OTP application.

➤ Exercise: OTP-Applications-2
So far, we haven’t written any tests for the application. Is there anything
you can test? See what you can do.

Releasing Your Code
One way Erlang achieves nine-nines application availability is by having a
rock-solid release-management system. Elixir makes this system easy to use.

Before we get too far, let’s talk terminology.

A release is a bundle that contains a particular version of your application,
its dependencies, its configuration, and any metadata it requires to get running
and stay running. A deployment is a way of getting a release into an environ-
ment where it can be used.

A hot upgrade is a kind of deployment that allows the release of a currently
running application to be changed while that application continues to run—the
upgrade happens in place with no user-detectable disruption.

In this section we’ll talk about releases and hot upgrades. We won’t dig too
deeply into deployment.

Distillery—The Elixir Release Manager
Distillery is an Elixir package that makes most release tasks easy. In particular,
it can take the complexity that is the source of your project, along with its
dependencies, and reduce it down to a single deployable file.

Imagine you were managing the deployment of hundreds of thousands of
lines of code into running telephone switches, while maintaining all the
ongoing connections, providing a full audit trail, and maintaining contractual
uptime guarantees. This is clearly complex. Very complex. And this is the
task the Erlang folks faced, so they created tools that help.

Distillery is a layer of abstraction on top of this complexity. Normally it man-
ages to hide it, but sometimes the lower levels leak out and you get to see
how the sausage is made.

Chapter 20. OTP: Applications • 282

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This book isn’t going to get that deep. Instead, I just want to give you a feel
for the process.

Before We Start
In Elixir, we version both the application code and the data it operates on.
The two are independent—we might go for a dozen code releases without
changing any data structures.

The code version is stored in the project dictionary in mix.exs. But how do we
version the data? Come to think of it, where do we even define the data?

In an OTP application, all state is maintained by servers, and each server’s
state is independent. So it makes sense to version the app data within each
server module. Perhaps a server initially holds its state in a two-element tuple.
That could be version 0. Later, it is changed to hold state in a three-element
tuple. That could be version 1.

We’ll see the significance of this later. For now, let’s just set the version of
the state data in our server. We use the @vsn (version) directive:

otp-app/sequence_v0/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer

@vsn "0"

Now let’s generate a release.

Your First Release
First, we have to add distillery as a project dependency. Open the sequence
project’s mix.exs file and update the deps function.

otp-app/sequence_v0/mix.exs
defp deps do

[
{:distillery, "~> 1.5", runtime: false},

]
end

(The runtime: false option tells mix that Distillery is not to be started with the
running application.)

Remember to install the dependency:

$ mix do deps.get, deps.compile

report erratum • discuss

Distillery—The Elixir Release Manager • 283

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v0/lib/sequence/server.ex
http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v0/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Distillery makes sensible choices for the various configuration options, so for
a basic app like this we’re now ready to create our first release. To start off
we create the release configuration:

$ mix release.init

An example config file has been placed in rel/config.exs, review it,
make edits as needed/desired, and then run `mix release` to build
the release

If you’re following along at home, have a look at rel.config.exs (it’s too large to
show here). The defaults look good, so let’s build the actual release. We’ll tell
it we want a production version of the release. If we don’t, the release it gen-
erates will be for development, and won’t be a self-contained package.

$ mix release --env=prod
==> Assembling release..
==> Building release sequence:0.1.0 using environment prod
==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
==> Packaging release..
==> Release successfully built!

You can run it in one of the following ways:
Interactive: _build/dev/rel/sequence/bin/sequence console
Foreground: _build/dev/rel/sequence/bin/sequence foreground
Daemon: _build/dev/rel/sequence/bin/sequence start

Distillery got the application name and version number from your mix.exs file,
and packaged your app into the _build/dev/rel/ directory:

_build/dev/rel
└── sequence

├── bin « global scripts
│ ├── nodetool
│ ├── release_utils.escript
│ ├── sequence
│ ├── sequence.bat
│ ├── sequence_loader.sh
│ └── start_clean.boot
├── erts-9.1 « the runtime (Erlang + Elixir)
│ ├── . . .
│ ├── elixir-1.5.2
│ ├── sequence-0.1.0 « our compiled application
│ │ ├── consolidated
│ │ │ ├── Elixir.Collectable.beam
│ │ │ ├── Elixir.Enumerable.beam
│ │ │ ├── Elixir.IEx.Info.beam
│ │ │ ├── Elixir.Inspect.beam
│ │ │ ├── Elixir.List.Chars.beam
│ │ │ └── Elixir.String.Chars.beam

Chapter 20. OTP: Applications • 284

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

│ │ └── ebin
│ │ ├── Elixir.Sequence.Application.beam
│ │ ├── Elixir.Sequence.Server.beam
│ │ ├── Elixir.Sequence.Stash.beam
│ │ ├── Elixir.Sequence.beam
│ │ └── sequence.app
│ └── stdlib-3.4.2
└── releases « release specific stuff

├── 0.1.0 « our initial release
│ ├── commands
│ ├── hooks
│ ├── . . .
│ ├── libexec
│ ├── . . .
│ ├── sequence.bat
│ ├── sequence.boot
│ ├── sequence.rel
│ ├── sequence.script
│ ├── sequence.sh
│ ├── sequence.tar.gz « the packaged release
│ ├── start_clean.boot
│ ├── sys.config
│ └── vm.args
├── RELEASES
└── start_erl.data

The most important file is rel/sequence/releases/0.0.1/sequence.tar.gz. It contains
everything needed to run this release. This is the file we deploy to our servers.

A Toy Deployment Environment

I don’t want to slow things down by having you provision a server in the cloud,
so I’m going to deploy to my local machine. However, to make it a little more
realistic, I’ll pretend this machine is remote, and use ssh to do all the deploying.
I’ll also be creating directories and copying files manually. In practice, you’d
want to automate all of this with something like Capistrano or Ansible.

We’ll store the releases in a deploy directory. I’ll put this inside my home
directory—feel free to put it anywhere (writable) you want.

$ ssh localhost mkdir ~/deploy

Deploy and Run the App

Now we need to set up the initial release and its directory structure. Copy
the sequence.tar.gz file into the deploy directory, and then extract its contents.

$ scp _build/dev/rel/sequence/releases/0.1.0/sequence.tar.gz localhost:deploy
$ ssh localhost tar -x -f ~/deploy/sequence.tar.gz -C ~/deploy

report erratum • discuss

Distillery—The Elixir Release Manager • 285

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The app is now ready to run. The scripts in deploy/bin control it. These, in turn,
delegate to scripts in the current release directory (all on the server).

Let’s start an IEx console. (The ssh -t option lets us control the remote IEx with
^C and ^G.)

$ ssh -t localhost ~/deploy/bin/sequence console
Using /Users/dave/deploy/releases/0.0.1/sequence.sh
Interactive Elixir (1.x) - press Ctrl+C to exit (type h() ENTER for help)

iex(sequence@127.0.0.1)2> Sequence.Server.next_number
456
iex(sequence@127.0.0.1)3> Sequence.Server.next_number
457

(Leave this session running—we’ll use it to demonstrate hot code reloading.)

A Second Release

Our marketing team ran a focus group. It seems our customers want the
next_number function to return a message like “the next number is 458.”

First we’ll change server.ex:

otp-app/sequence_v1/lib/sequence/server.ex
def next_number do

with number = GenServer.call(__MODULE__, :next_number),
do: "The next number is #{number}"

end

Then we’ll bump the application’s version number in mix.exs.

otp-app/sequence_v1/mix.exs
def project do

[
app: :sequence,
version: "0.2.0",➤

elixir: "~> 1.6-dev",➤

start_permanent: Mix.env() == :prod,➤

deps: deps()➤

]➤

end➤

(We don’t have to change the @vsn value—the representation of the server’s
state is not affected by this change.)

After exhaustive testing, we decide we’re ready to create a new release. Here
we have a choice. If we just run mix release we’ll create a whole new releasable
application. To deploy it, we’d basically copy it just as we did before, then
stop the old app and start the new one.

Chapter 20. OTP: Applications • 286

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v1/lib/sequence/server.ex
http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v1/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The alternative is to deploy an upgrade release (sometimes called a hot
upgrade). This is code that will upgrade the application while it is still run-
ning—there should be no downtime. This is one reason why Elixir apps can
achieve such high availability numbers. Let’s take the upgrade path:

$ mix release --env=prod --upgrade
==> Assembling release..
==> Building release sequence:0.2.0 using environment prod
==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
==> Generated .appup for sequence 0.1.0 -> 0.2.0➤

==> Relup successfully created
==> Packaging release..
==> Release successfully built!

You can run it in one of the following ways:
Interactive: _build/dev/rel/sequence/bin/sequence console
Foreground: _build/dev/rel/sequence/bin/sequence foreground
Daemon: _build/dev/rel/sequence/bin/sequence start

The key thing to note is the creation of the .appup file. This is what tells the
Erlang runtime how to upgrade our running app.

Deploying an Upgrade

The deployment of the first release of an app is special: it has to create an
environment for that app. With that in place, this release (and all subsequent
releases) will be slightly different. We have to create a release directory on the
server and copy the tarball into it. The directory will be under deploy/releases,
and will be named the same as the release’s version number.

$ ssh localhost mkdir deploy/releases/0.2.0
$ scp _build/dev/rel/sequence/releases/0.2.0/sequence.tar.gz \

localhost:deploy/releases/0.2.0

Now let’s upgrade the running code:

$ ssh localhost ~/deploy/bin/sequence upgrade 0.2.0
Release 0.2.0 not found, attempting to unpack releases/0.2.0/sequence.tar.gz
Unpacked successfully: "0.2.0"
Release 0.2.0 is already unpacked, now installing.
Installed Release: 0.2.0
Made release permanent: "0.2.0"

Head back over to the terminal session that’s talking to the app. Don’t restart
it—just make another request:

iex(sequence@127.0.0.1)4> Sequence.Server.next_number
"The next number is 458"
iex(sequence@127.0.0.1)5> Sequence.Server.next_number
"The next number is 459"

report erratum • discuss

Distillery—The Elixir Release Manager • 287

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Erlang can actually run two versions of a module at the same time. Currently
executing code will continue to use the old version until that code explicitly
cites the name of the module that has changed. At that point, and for that
particular process, execution will swap to the new version.

This is a critical part of hot loading of code. We want to let code that is cur-
rently running continue without interruption, but the new release may not
be compatible with it. So Erlang lets it run on the old release. But the next
request will reference the module explicitly, and the new code will be loaded.

Here, when we say Sequence.Server.next_number, the reference to Sequence.Server
triggers the reload, so the 0.2.0 release handles the next request.

What if our new release was a disaster? That’s not a problem—we can always
downgrade to a previous version.

$ ssh localhost ~/deploy/bin/sequence downgrade 0.1.0
Release 0.1.0 is already unpacked
Release 0.1.0 is marked old, switching to it.
Installed Release: 0.1.0
Made release permanent: "0.1.0"

Warning: "/Users/dave/deploy/releases/0.0.1/relup" missing (optional)

iex(sequence@127.0.0.1)6> Sequence.Server.next_number
460
iex(sequence@127.0.0.1)7> Sequence.Server.next_number
461

Cool. Let’s go back to the current version before continuing.

$ ssh localhost ~/deploy/bin/sequence upgrade 0.2.0

Migrating Server State

Our boss calls. We’re about to go for a second round of funding for our wildly
successful sequence-server business, but customers have noticed a bug. We
implemented increment_number to add a delta to the current number—a one-
time change. But apparently it was instead supposed to set the difference
between successive numbers we served.

Let’s try the existing code in our already-running console:

iex(sequence@127.0.0.1)8> Sequence.Server.next_number
The next number is 462
iex(sequence@127.0.0.1)9> Sequence.Server.increment_number 10
:ok
iex(sequence@127.0.0.1)10> Sequence.Server.next_number
The next number is 472
iex(sequence@127.0.0.1)10> Sequence.Server.next_number
The next number is 473

Chapter 20. OTP: Applications • 288

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Yup, we’re applying the delta only once.

Well, that’s an easy change to the code. We simply have to keep one extra
thing in the state—a delta value. Here’s the updated server code:

otp-app/sequence_v2/lib/sequence/server.ex
defmodule Sequence.Server do

use GenServer
require Logger

@vsn "1"

defmodule State do
defstruct(current_number: 0, delta: 1)

end

#####
External API

def start_link(_) do
GenServer.start_link(__MODULE__, nil, name: __MODULE__)

end

def next_number do
with number = GenServer.call(__MODULE__, :next_number),
do: "The next number is #{number}"

end

def increment_number(delta) do
GenServer.cast __MODULE__, {:increment_number, delta}

end

#####
GenServer implementation

def init(_) do
state = %State{ current_number: Sequence.Stash.get() }
{ :ok, state }

end

def handle_call(:next_number, _from, state = %{current_number: n}) do
{ :reply, n, %{state | current_number: n + state.delta} }

end

def handle_cast({:increment_number, delta}, state) do
{ :noreply, %{state | delta: delta }}

end

def terminate(_reason, current_number) do
Sequence.Stash.update(current_number)

end

end

report erratum • discuss

Distillery—The Elixir Release Manager • 289

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v2/lib/sequence/server.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The big change is that we made the state a struct rather than a tuple and
added the delta value. We updated the increment handler to change the value
of delta, and the next number handler now adds in the delta each time.

The format of the state changed, so we updated the version number (@vsn) to 1.

If we simply stop the old server and start the new one, we’ll lose the state
stored in the old one. But we can’t just copy the state across—the old server
had a single integer and the new one has a struct.

Fortunately, OTP has a callback for this. In the new server, implement the
code_change function.

otp-app/sequence_v2/lib/sequence/server.ex
def code_change("0", old_state = current_number, _extra) do

new_state = %State{
current_number: current_number,
delta: 1

}
Logger.info "Changing code from 0 to 1"
Logger.info inspect(old_state)
Logger.info inspect(new_state)
{ :ok, new_state }

end

The callback takes three arguments—the old version number, the old state,
and an additional parameter we don’t use. The callback’s job is to return {:ok,
new_state}. In our case, the new state is a struct containing the stash PID
and the old current number, along with the new delta value, initialized to 1.
We’ll need to bump the version number in mix.exs.

otp-app/sequence_v2/mix.exs
def project do

[
app: :sequence,
version: "0.3.0",➤

elixir: "~> 1.6-dev",
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

Time to create the new release:

mix release --env=prod --upgrade
==> Assembling release..
==> Building release sequence:0.3.0 using environment prod
==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
==> Generated .appup for sequence 0.2.0 -> 0.3.0
==> Relup successfully created

Chapter 20. OTP: Applications • 290

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v2/lib/sequence/server.ex
http://media.pragprog.com/titles/elixir16/code/otp-app/sequence_v2/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

==> Packaging release..
==> Release successfully built!

You can run it in one of the following ways:
Interactive: _build/dev/rel/sequence/bin/sequence console
Foreground: _build/dev/rel/sequence/bin/sequence foreground
Daemon: _build/dev/rel/sequence/bin/sequence start

Copy it into the deployment location:

$ ssh localhost mkdir ~/deploy/releases/0.3.0/
$ scp _build/dev/rel/sequence/releases/0.3.0/sequence.tar.gz \

localhost:deploy/releases/0.3.0/

Cross your fingers, and upgrade the app:

$ ssh localhost ~/deploy/bin/sequence upgrade 0.3.0
Release 0.3.0 not found, attempting to unpack releases/0.3.0/sequence.tar.gz
Unpacked successfully: "0.3.0"
Release 0.3.0 is already unpacked, now installing.
Installed Release: 0.3.0
Made release permanent: "0.3.0"

But the real magic happened over in the console window:

16:03:12.096 [info] Changing code from 0 to 1
16:03:12.096 [info] 459
16:03:12.096 [info] %Sequence.Server.State{current_number: 459, delta: 1}

That’s the logging we added to our code_change function. We seem to have
migrated the server’s state into our new structure. Let’s try it out:

iex(sequence@127.0.0.1)10> Sequence.Server.next_number
"The next number is 459"
iex(sequence@127.0.0.1)11> Sequence.Server.increment_number 10
:ok
iex(sequence@127.0.0.1)13> Sequence.Server.next_number
"The next number is 460"
iex(sequence@127.0.0.1)14> Sequence.Server.next_number
"The next number is 470"

That’s the new behavior, running with our new state structure. We updated
the code twice and migrated data once, all while the application continued
to run. There was no service disruption, and no loss of data.

Plutarch records the story of a ship called Theseus. Over the course of many
years most of the ship’s structure was replaced, piece by piece. While this
was happening, the ship was in continuous use. Plutarch raises the question,
“Is the renovated Theseus the same as the original?”

Using Elixir release management, our applications can work the same way
the Theseus did, running continuously but being updated all the time.

report erratum • discuss

Distillery—The Elixir Release Manager • 291

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Is the latest application the same as the original? Who cares, as long as it’s
still running?

OTP Is Big—Unbelievably Big
This book barely scratches OTP’s surface. But (I hope) it does introduce the
major concepts and give you an idea of what’s possible.

More advanced uses of OTP may include release management (including hot
code-swapping), handling of distributed failover, automated scaling, and so
on. But if you have an application that needs such things, you likely will
already have or will soon need dedicated operations experts who know the
low-level details of making OTP apps perform the way you need them to.

There is never anything simple about scaling out to the kind of size and
sophistication that is possible with OTP. But now you know you can start
small and get there.

However, there are ways of writing some OTP servers more simply, and that’s
the subject of the next chapter.

Your Turn
➤ Exercise: OTP-Applications-3

Our boss notices that after we applied our version-0-to-version-1 code
change, the delta indeed works as specified. However, she also notices
that if the server crashes, the delta is forgotten—only the current number
is retained. Create a new release that stashes both values.

Chapter 20. OTP: Applications • 292

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 21

Tasks and Agents
This part of the book is about processes and process distribution. So far we’ve
covered two extremes. In the first chapters we looked at the spawn primitive,
along with message sending and receiving and multinode operations. We then
looked at OTP, the 800-pound gorilla of process architecture.

Sometimes, though, we want something in the middle. We want to be able to
run simple processes, either for background processing or for maintaining
state. But we don’t want to be bothered with the low-level details of spawn,
send, and receive, and we really don’t need the extra control that writing our
own GenServer gives us.

Enter tasks and agents, two simple-to-use Elixir abstractions. These use
OTP’s features but insulate us from these details.

Tasks
An Elixir task is a function that runs in the background.

tasks/tasks1.exs
defmodule Fib do

def of(0), do: 0
def of(1), do: 1
def of(n), do: Fib.of(n-1) + Fib.of(n-2)

end

IO.puts "Start the task"
worker = Task.async(fn -> Fib.of(20) end)
IO.puts "Do something else"
...
IO.puts "Wait for the task"
result = Task.await(worker)

IO.puts "The result is #{result}"

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tasks/tasks1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The call to Task.async creates a separate process that runs the given function.
The return value of async is a task descriptor (actually a PID and a ref) that
we’ll use to identify the task later.

Once the task is running, the code continues with other work. When it wants
to get the function’s value, it calls Task.await, passing in the task descriptor.
This call waits for our background task to finish and returns its value.

When we run this, we see

$ elixir tasks1.exs
Start the task
Do something else
Wait for the task
The result is 6765

We can also pass Task.async the name of a module and function, along with
any arguments. Here are the changes:

tasks/tasks2.exs
worker = Task.async(Fib, :of, [20])
result = Task.await(worker)
IO.puts "The result is #{result}"

Tasks and Supervision
Tasks are implemented as OTP servers, which means we can add them to
our application’s supervision tree. We can do this in a number of ways.

First, we can link a task to a currently supervised process by calling start_link
instead of async. This has less impact than you might think. If the function
running in the task crashes and we use start_link, our process will be terminated
immediately. If instead we use async, our process will be terminated only when
we subsequently call await on the crashed task.

The second way to supervise tasks is to run them directly from a supervisor.
Here we specify the Task module itself as the module to run, and pass it the
function to be run in the background as a parameter.

children = [
{ Task, fn -> do_something_extraordinary() end }

]

Supervisor.start_link(children, strategy: :one_for_one)

You can take this approach a step further by moving the task’s code out of
the supervisor and into its own module.

Chapter 21. Tasks and Agents • 294

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tasks/tasks2.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

tasks/my_app/lib/my_app/my_task.ex
defmodule MyApp.MyTask do

use Task

def start_link(param) do
Task.start_link(__MODULE__, :thing_to_run, [param])

end

def thing_to_run(param) do
IO.puts "running task with #{param}"

end
end

The key thing here is use Task. This defines a child_spec function, allowing this
module to be supervised:

children = [
{ MyApp.MyTask, 123 }
]

The problem with this approach is that you can’t use Task.await, because your
code is not directly calling Task.async.

The solution to this is to supervise the tasks dynamically. This is similar in
concept to using a :simple_one_for_one supervisor strategy for regular servers.
See the Task documentation for details.1

However, before you get too carried away, remember that a simple start_link in
an already-supervised process may well be all you need.

Agents
An agent is a background process that maintains state. This state can be
accessed at different places within a process or node, or across multiple nodes.

The initial state is set by a function we pass in when we start the agent.

We can interrogate the state using Agent.get, passing it the agent descriptor
and a function. The agent runs the function on its current state and returns
the result.

We can also use Agent.update to change the state held by an agent. As with the
get operator, we pass in a function. Unlike with get, the function’s result
becomes the new state.

Here’s a bare-bones example. We start an agent whose state is the integer 0.
We then use the identity function, &(&1), to return that state. Calling Agent.update
with &(&1+1) increments the state, as verified by a subsequent get.

1. https://hexdocs.pm/elixir/Task.html

report erratum • discuss

Agents • 295

http://media.pragprog.com/titles/elixir16/code/tasks/my_app/lib/my_app/my_task.ex
https://hexdocs.pm/elixir/Task.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> { :ok, count } = Agent.start(fn -> 0 end)
{:ok, #PID<0.69.0>}
iex> Agent.get(count, &(&1))
0
iex> Agent.update(count, &(&1+1))
:ok
iex> Agent.update(count, &(&1+1))
:ok
iex> Agent.get(count, &(&1))
2

In the previous example, the variable count holds the agent process’s PID. We
can also give agents a local or global name and access them using this name.
In this case we exploit the fact that an uppercase bareword in Elixir is con-
verted into an atom with the prefix Elixir., so when we say Sum it is actually the
atom :Elixir.Sum.

iex> Agent.start(fn -> 1 end, name: Sum)
{:ok, #PID<0.78.0>}
iex> Agent.get(Sum, &(&1))
1
iex> Agent.update(Sum, &(&1+99))
:ok
iex> Agent.get(Sum, &(&1))
100

The following example shows a more typical use. The Frequency module main-
tains a list of word/frequency pairs in a map. The dictionary itself is stored
in an agent, which is named after the module.

This is all initialized with the start_link function, which, presumably, is invoked
during application initialization.

tasks/agent_dict.exs
defmodule Frequency do

def start_link do
Agent.start_link(fn -> %{} end, name: __MODULE__)

end

def add_word(word) do
Agent.update(__MODULE__,

fn map ->
Map.update(map, word, 1, &(&1+1))

end)
end

def count_for(word) do
Agent.get(__MODULE__, fn map -> map[word] end)

end

Chapter 21. Tasks and Agents • 296

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/tasks/agent_dict.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def words do
Agent.get(__MODULE__, fn map -> Map.keys(map) end)

end

end

We can play with this code in IEx.

iex> c "agent_dict.exs"
[Frequency]
iex> Frequency.start_link
{:ok, #PID<0.101.0>}
iex> Frequency.add_word "dave"
:ok
iex> Frequency.words
["dave"]
iex(41)> Frequency.add_word "was"
:ok
iex> Frequency.add_word "here"
:ok
iex> Frequency.add_word "he"
:ok
iex> Frequency.add_word "was"
:ok
iex> Frequency.words
["he", "dave", "was", "here"]
iex> Frequency.count_for("dave")
1
iex> Frequency.count_for("was")
2

In a way, you can look at our Frequency module as the implementation part of
a gen_server—using agents has simply abstracted away all the housekeeping
we had to do.

A Bigger Example
Let’s rewrite our anagram code to use both tasks and an agent.

We’ll load words in parallel from a number of separate dictionaries. A separate
task handles each dictionary. We’ll use an agent to store the resulting list of
words and signatures.

tasks/anagrams.exs
defmodule Dictionary do

@name __MODULE__

##
External API

report erratum • discuss

A Bigger Example • 297

http://media.pragprog.com/titles/elixir16/code/tasks/anagrams.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def start_link,
do: Agent.start_link(fn -> %{} end, name: @name)

def add_words(words),
do: Agent.update(@name, &do_add_words(&1, words))

def anagrams_of(word),
do: Agent.get(@name, &Map.get(&1, signature_of(word)))

##
Internal implementation

defp do_add_words(map, words),
do: Enum.reduce(words, map, &add_one_word(&1, &2))

defp add_one_word(word, map),
do: Map.update(map, signature_of(word), [word], &[word|&1])

defp signature_of(word),
do: word |> to_charlist |> Enum.sort |> to_string

end

defmodule WordlistLoader do
def load_from_files(file_names) do

file_names
|> Stream.map(fn name -> Task.async(fn -> load_task(name) end) end)
|> Enum.map(&Task.await/1)

end

defp load_task(file_name) do
File.stream!(file_name, [], :line)
|> Enum.map(&String.trim/1)
|> Dictionary.add_words

end
end

Our four wordlist files contain the following:

list4list3list2list1

roganpaletesterangor
rongapatelestreargon
steerpeltagorancaret
sterepetalgranocarte
streepleatgroancater
tersereactleaptcrate
tsererectanagorcreat
tepalreestorangcreta

Let’s run it:

$ iex anagrams.exs
iex> Dictionary.start_link
{:ok, #PID<0.66.0>}
iex> Enum.map(1..4, &"words/list#{&1}") |> WordlistLoader.load_from_files
[:ok, :ok, :ok, :ok]

Chapter 21. Tasks and Agents • 298

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> Dictionary.anagrams_of "organ"
["ronga", "rogan", "orang", "nagor", "groan", "grano", "goran",
"argon", "angor"]

Making It Distributed
Agents and tasks run as OTP servers, so they are easy to distribute—just give
our agent a globally accessible name. That’s a one-line change:

@name {:global, __MODULE__}

Now we’ll load our code into two separate nodes and connect them. (Remember
that we have to specify names for the nodes so they can talk.)

Window #1
$ iex --sname one anagrams_dist.exs
iex(one@FasterAir)>

Window #2
$ iex --sname two anagrams_dist.exs
iex(two@FasterAir)> Node.connect :one@FasterAir
true
iex(two@FasterAir)> Node.list
[:one@FasterAir]

We’ll start the dictionary agent in node one—this is where the actual dictionary
will end up. We’ll then load the dictionary using both nodes one and two:

Window #1
iex(one@FasterAir)> Dictionary.start_link
{:ok, #PID<0.68.0>}
iex(one@FasterAir)> WordlistLoader.load_from_files(~w{words/list1 words/list2})
[:ok, :ok]

Window #2
iex(two@FasterAir)> WordlistLoader.load_from_files(~w{words/list3 words/list4})
[:ok, :ok]

Finally, we’ll query the agent from both nodes:

Window #1
iex(one@FasterAir)> Dictionary.anagrams_of "argon"
["ronga", "rogan", "orang", "nagor", "groan", "grano", "goran", "argon",
"angor"]

Window #2
iex(two@FasterAir)> Dictionary.anagrams_of "crate"
["recta", "react", "creta", "creat", "crate", "cater", "carte",
"caret"]

report erratum • discuss

A Bigger Example • 299

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Agents and Tasks, or GenServer?
When do you use agents and tasks, and when do you use a GenServer?

The answer is to use the simplest approach that works. Agents and tasks are
great when you’re dealing with very specific background activities, whereas
GenServers (as their name suggests) are more general.

You can eliminate the need to make a decision by wrapping your agents and
tasks in modules, as we did in our anagram example. That way you can always
switch from the agent or task implementation to the full-blown GenServer
without affecting the rest of the code base.

It’s time to move on and look at some advanced Elixir.

Chapter 21. Tasks and Agents • 300

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Part III

More Advanced Elixir

Among the joys of Elixir is that it laughs at the concept of “what you see is what you
get.” Instead, you can extend it in many different ways. This allows you to add layers
of abstraction to your code, which makes your code easier to work with.

This part covers macros (which let you extend the language’s syntax), protocols (which
let you add behaviors to existing modules), and use (which lets you add capabilities
to a module). We finish with a grab-bag chapter of miscellaneous Elixir tricks and tips.

CHAPTER 22

Macros and Code Evaluation
Have you ever felt frustrated that a language didn’t have just the right feature
for some code you were writing? Or have you found yourself repeating chunks
of code that weren’t amenable to factoring into functions? Or have you just
wished you could program closer to your problem domain?

If so, then you’ll love this chapter.

But, before we get into the details, here’s a warning: macros can easily make
your code harder to understand, because you’re essentially rewriting parts
of the language. For that reason, never use a macro when you could use a
function. Let’s repeat that:

Never use a macro when you could use a function.

In fact, you’ll probably not write a macro in regular application code. But if
you’re writing a library and want to use some of the metaprogramming tech-
niques that we show in later chapters, you’ll need to know how macros work.

Implementing an if Statement
Let’s imagine that Elixir didn’t have an if statement—that all it has is case.
Although we’re prepared to abandon our old friend the while loop, not having
an if statement is just too much to bear, so we set about implementing one.

We’ll want to call it using something like

myif «condition» do
«evaluate if true»

else
«evaluate if false»

end

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We know that blocks in Elixir are converted into keyword parameters, so this
is equivalent to

myif «condition»,
do: «evaluate if true»,
else: «evaluate if false»

Here’s a sample call:

My.myif 1==2, do: (IO.puts "1 == 2"), else: (IO.puts "1 != 2")

Let’s try to implement myif as a function:

defmodule My do
def myif(condition, clauses) do

do_clause = Keyword.get(clauses, :do, nil)
else_clause = Keyword.get(clauses, :else, nil)

case condition do
val when val in [false, nil]

-> else_clause
_otherwise

-> do_clause
end

end
end

When we run it, we’re (mildly) surprised to get the following output:

iex> My.myif 1==2, do: (IO.puts "1 == 2"), else: (IO.puts "1 != 2")
1 == 2
1 != 2
:ok

When we call the myif function, Elixir has to evaluate all of its parameters
before passing them in. So both the do: and else: clauses are evaluated, and
we see their output. Because IO.puts returns :ok on success, what actually gets
passed to myif is

myif 1==2, do: :ok, else: :ok

This is why the final return value is :ok.

We need a way of delaying the execution of these clauses. This is where macros
come in. But before we implement our myif macro, we need a little background.

Macros Inject Code
Let’s pretend we’re the Elixir compiler. We read a module’s source top to
bottom and generate a representation of the code we find. That representation
is a nested Elixir tuple.

Chapter 22. Macros and Code Evaluation • 304

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

If we want to support macros, we need a way to tell the compiler that we’d
like to manipulate a part of that tuple. We do that using defmacro, quote, and
unquote.

In the same way that def defines a function, defmacro defines a macro. You’ll
see what that looks like shortly. However, the real magic starts not when we
define a macro, but when we use one.

When we pass parameters to a macro, Elixir doesn’t evaluate them. Instead,
it passes them as tuples representing their code. We can examine this
behavior using a simple macro definition that prints out its parameter.

macros/dumper.exs
defmodule My do

defmacro macro(param) do
IO.inspect param

end
end

defmodule Test do
require My

These values represent themselves
My.macro :atom #=> :atom
My.macro 1 #=> 1
My.macro 1.0 #=> 1.0
My.macro [1,2,3] #=> [1,2,3]
My.macro "binaries" #=> "binaries"
My.macro { 1, 2 } #=> {1,2}
My.macro do: 1 #=> [do: 1]

And these are represented by 3-element tuples

My.macro { 1,2,3,4,5 }
=> {:"{}",[line: 20],[1,2,3,4,5]}

My.macro do: (a = 1; a+a)
=> [do:
{:__block__,[],
[{:=,[line: 22],[{:a,[line: 22],nil},1]},
{:+,[line: 22],[{:a,[line: 22],nil},{:a,[line: 22],nil}]}]}]

My.macro do
1+2

else
3+4

end
=> [do: {:+,[line: 24],[1,2]},
else: {:+,[line: 26],[3,4]}]

end

report erratum • discuss

Macros Inject Code • 305

http://media.pragprog.com/titles/elixir16/code/macros/dumper.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This shows us that atoms, numbers, lists (including keyword lists), binaries,
and tuples with two elements are represented internally as themselves. All
other Elixir code is represented by a three-element tuple. Right now, the
internals of that representation aren’t important.

Load Order
You may be wondering about the structure of the preceding code. We put the
macro definition in one module, and the usage of that macro in another. And
that second module included a require call.

Macros are expanded before a program executes, so the macro defined in one
module must be available as Elixir is compiling another module that uses
those macros. The require function tells Elixir to ensure the named module is
compiled before the current one. In practice it is used to make the macros
defined in one module available in another.

But the reason for the two modules is less clear. It has to do with the fact
that Elixir first compiles source files and then runs them.

If we have one module per source file and we reference a module in file A from
file B, Elixir will load the module from A, and everything just works. But if
we have a module and the code that uses it in the same file, and the module
is defined in the same scope in which we use it, Elixir will not know to load
the module’s code. We’ll get this error:

** (CompileError)
.../dumper.ex:7:
module My is not loaded but was defined. This happens because you
are trying to use a module in the same context it is defined. Try
defining the module outside the context that requires it.

By placing the code that uses the module My in a separate module, we force
My to load.

The quote Function
We’ve seen that when we pass parameters to a macro they are not evaluated.
The language comes with a function, quote, that also forces code to remain in
its unevaluated form. quote takes a block and returns the internal representa-
tion of that block. We can play with it in IEx:

Chapter 22. Macros and Code Evaluation • 306

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> quote do: :atom
:atom
iex> quote do: 1
1
iex> quote do: 1.0
1.0
iex> quote do: [1,2,3]
[1,2,3]
iex> quote do: "binaries"
"binaries"
iex> quote do: {1,2}
{1,2}
iex> quote do: [do: 1]
[do: 1]
iex> quote do: {1,2,3,4,5}
{:"{}",[],[1,2,3,4,5]}
iex> quote do: (a = 1; a + a)
{:__block__, [],
[{:=, [], [{:a, [], Elixir}, 1]},
{:+, [context: Elixir, import: Kernel],
[{:a, [], Elixir}, {:a, [], Elixir}]}]}

iex> quote do: [do: 1 + 2, else: 3 + 4]
[do: {:+, [context: Elixir, import: Kernel], [1, 2]},
else: {:+, [context: Elixir, import: Kernel], [3, 4]}]

There’s another way to think about quote. When we write "abc", we create a
binary containing a string. The double quotes say, “interpret what follows as
a string of characters and return the appropriate representation.”

quote is the same: it says, “interpret the content of the block that follows as
code, and return the internal representation.”

Using the Representation as Code
When we extract the internal representation of some code (either via a macro
parameter or using quote), we stop Elixir from adding it automatically to the
tuples of code it is building during compilation—we’ve effectively created a
free-standing island of code. How do we inject that code back into our pro-
gram’s internal representation?

There are two ways.

The first is our old friend the macro. Just like with a function, the value a
macro returns is the last expression evaluated in that macro. That expression
is expected to be a fragment of code in Elixir’s internal representation. But
Elixir does not return this representation to the code that invoked the macro.
Instead it injects the code back into the internal representation of our program

report erratum • discuss

Using the Representation as Code • 307

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

and returns to the caller the result of executing that code. But that execution
takes place only if needed.

We can demonstrate this in two steps. First, here’s a macro that simply returns
its parameter (after printing it out). The code we give it when we invoke the
macro is passed as an internal representation, and when the macro returns
that code, that representation is injected back into the compile tree.

macros/eg.exs
defmodule My do

defmacro macro(code) do
IO.inspect code
code

end
end
defmodule Test do

require My
My.macro(IO.puts("hello"))

end

When we run this, we see

{{:.,[line: 11],[{:__aliases__,[line: 11],[:IO]},:puts]}, [line: 11],["hello"]}
hello

Now we’ll change that file to return a different piece of code. We use quote to
generate the internal form:

macros/eg1.exs
defmodule My do

defmacro macro(code) do
IO.inspect code
quote do: IO.puts "Different code"

end
end
defmodule Test do

require My
My.macro(IO.puts("hello"))

end

This generates

{{:.,[line: 11],[{:__aliases__,[line: 11],[:IO]},:puts]}, [line: 11],["hello"]}
Different code

Even though we passed IO.puts("hello") as a parameter, it was never executed
by Elixir. Instead, it ran the code fragment we returned using quote.

Chapter 22. Macros and Code Evaluation • 308

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/macros/eg.exs
http://media.pragprog.com/titles/elixir16/code/macros/eg1.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Before we can write our version of if, we need one more trick—the ability to
substitute existing code into a quoted block. There are two ways of doing this:
by using the unquote function and with bindings.

The unquote Function
Let’s get two things out of the way. First, we can use unquote only inside a quote
block. Second, unquote is a silly name. It should really be something like
inject_code_fragment.

Let’s see why we need this. Here’s a simple macro that tries to output the
result of evaluating the code we pass it:

defmacro macro(code) do
quote do

IO.inspect(code)
end

end

Unfortunately, when we run it, it reports an error:

** (CompileError).../eg2.ex:11: function code/0 undefined

Inside the quote block, Elixir is just parsing regular code, so the name code is
inserted literally into the code fragment it returns. But we don’t want that.
We want Elixir to insert the evaluation of the code we pass in. And that’s
where we use unquote. It temporarily turns off quoting and simply injects a
code fragment into the sequence of code being returned by quote.

defmodule My do
defmacro macro(code) do

quote do
IO.inspect(unquote(code))

end
end

end

Inside the quote block, Elixir is busy parsing the code and generating its
internal representation. But when it hits the unquote, it stops parsing and
simply copies the code parameter into the generated code. After unquote, it goes
back to regular parsing.

There’s another way of thinking about this. Using unquote inside a quote is a
way of deferring the execution of the unquoted code. It doesn’t run when the
quote block is parsed. Instead it runs when the code generated by the quote
block is executed.

report erratum • discuss

Using the Representation as Code • 309

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Or, we can think in terms of our quote-as-string-literal analogy. In this case,
we can make a (slightly tenuous) case that unquote is a little like the interpola-
tion we can do in strings. When we write "sum=#{1+2}", Elixir evaluates 1+2
and interpolates the result into the quoted string. When we write quote do: def
unquote(name) do end, Elixir interpolates the contents of name into the code repre-
sentation it is building as part of the list.

Expanding a List—unquote_splicing

Consider this code:

iex> Code.eval_quoted(quote do: [1,2,unquote([3,4])])
{[1,2,[3,4]],[]}

The list [3,4] is inserted, as a list, into the overall quoted list, resulting in
[1,2,[3,4]].

If we instead wanted to insert just the elements of the list, we could use
unquote_splicing.

iex> Code.eval_quoted(quote do: [1,2,unquote_splicing([3,4])])
{[1,2,3,4],[]}

Remembering that single-quoted strings are lists of characters, this means
we can write

iex> Code.eval_quoted(quote do: [?a, ?= ,unquote_splicing('1234')])
{'a=1234',[]}

Back to Our myif Macro
We now have everything we need to implement an if macro.

macros/myif.ex
defmodule My do

defmacro if(condition, clauses) do
do_clause = Keyword.get(clauses, :do, nil)
else_clause = Keyword.get(clauses, :else, nil)
quote do

case unquote(condition) do
val when val in [false, nil] -> unquote(else_clause)
_ -> unquote(do_clause)

end
end

end
end

Chapter 22. Macros and Code Evaluation • 310

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/macros/myif.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmodule Test do
require My
My.if 1==2 do

IO.puts "1 == 2"
else

IO.puts "1 != 2"
end

end

It’s worth studying this code.

The if macro receives a condition and a keyword list. The condition and any
entries in the keyword list are passed as code fragments.

The macro extracts the do: and/or else: clauses from that list. It is then ready
to generate the code for our if statement, so it opens a quote block. That block
contains an Elixir case expression. This case expression has to evaluate the
condition that is passed in, so it uses unquote to inject that condition’s code
as its parameter.

When Elixir executes this case statement, it evaluates the condition. At that
point, case will match the first clause if the result is nil or false; otherwise it
matches the second clause. When a clause matches (and only then), we want
to execute the code that was passed in either the do: or else: values in the
keyword list, so we use unquote again to inject that code into the case.

Your Turn
➤ Exercise: MacrosAndCodeEvaluation-1

Write a macro called myunless that implements the standard unless function-
ality. You’re allowed to use the regular if expression in it.

➤ Exercise: MacrosAndCodeEvaluation-2
Write a macro called times_n that takes a single numeric argument. It
should define a function called times_n in the caller’s module that itself
takes a single argument, and that multiplies that argument by n. So,
calling times_n(3) should create a function called times_3, and calling times_3(4)
should return 12. Here’s an example of it in use:

defmodule Test do
require Times
Times.times_n(3)
Times.times_n(4)

end

IO.puts Test.times_3(4) #=> 12
IO.puts Test.times_4(5) #=> 20

report erratum • discuss

Using the Representation as Code • 311

http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Using Bindings to Inject Values
Remember that there are two ways of injecting values into quoted blocks.
One is unquote. The other is to use a binding. However, the two have different
uses and different semantics.

A binding is simply a keyword list of variable names and their values. When
we pass a binding to quote, the variables are set inside the body of that quote.

This is useful because macros are executed at compile time. This means they
don’t have access to values that are calculated at runtime.

Here’s an example. The intent is to have a macro that defines a function that
returns its own name:

defmacro mydef(name) do
quote do

def unquote(name)(), do: unquote(name)
end

end

We try this out using something like mydef(:some_name). Sure enough, that
defines a function that, when called, returns :some_name.

Buoyed by our success, we try something more ambitious:

macros/macro_no_binding.exs
defmodule My do

defmacro mydef(name) do
quote do

def unquote(name)(), do: unquote(name)
end

end
end

defmodule Test do
require My
[:fred, :bert] |> Enum.each(&My.mydef(&1))

end

IO.puts Test.fred

And we’re rewarded with this:

macro_no_binding.exs:12: invalid syntax in def _@1()

At the time the macro is called, the each loop hasn’t yet executed, so we have
no valid name to pass it. This is where bindings come in:

Chapter 22. Macros and Code Evaluation • 312

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/macros/macro_no_binding.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

macros/macro_binding.exs
defmodule My do

defmacro mydef(name) do
quote bind_quoted: [name: name] do

def unquote(name)(), do: unquote(name)
end

end
end

defmodule Test do
require My
[:fred, :bert] |> Enum.each(&My.mydef(&1))

end

IO.puts Test.fred #=> fred

Two things happen here. First, the binding makes the current value of name
available inside the body of the quoted block. Second, the presence of the
bind_quoted: option automatically defers the execution of the unquote calls in the
body. This way, the methods are defined at runtime.

As its name implies, bind_quoted takes a quoted code fragment. Simple things
such as tuples are the same as normal and quoted code, but for most values
you probably want to quote them or use Macro.escape to ensure that your code
fragment will be interpreted correctly.

Macros Are Hygienic
It is tempting to think of macros as some kind of textual substitution—a
macro’s body is expanded as text and then compiled at the point of call. But
that’s not the case. Consider this example:

macros/hygiene.ex
defmodule Scope do

defmacro update_local(val) do
local = "some value"
result = quote do
local = unquote(val)
IO.puts "End of macro body, local = #{local}"

end
IO.puts "In macro definition, local = #{local}"
result

end
end

report erratum • discuss

Macros Are Hygienic • 313

http://media.pragprog.com/titles/elixir16/code/macros/macro_binding.exs
http://media.pragprog.com/titles/elixir16/code/macros/hygiene.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmodule Test do
require Scope

local = 123
Scope.update_local("cat")
IO.puts "On return, local = #{local}"

end

Here’s the result of running that code:

In macro definition, local = some value
End of macro body, local = cat
On return, local = 123

If the macro body were just substituted in at the point of call, both it and the
module Test would share the same scope, and the macro would overwrite the
variable local, so we’d see

In macro definition, local = some value
End of macro body, local = cat
On return, local = cat

But that isn’t what happens. Instead, the macro definition has both its own
scope and a scope during execution of the quoted macro body. Both are dis-
tinct from the scope within the Test module. The upshot is that macros will
not clobber each other’s variables or the variables of modules and functions
that use them.

The import and alias functions are also locally scoped. See the documentation
for quote for a full description. This also describes how to turn off hygiene for
variables and how to control the stack trace’s format if things go wrong while
executing a macro.

Other Ways to Run Code Fragments
We can use the function Code.eval_quoted to evaluate code fragments, such as
those returned by quote.

iex> fragment = quote do: IO.puts("hello")
{{:.,[],[{:__aliases__,[alias: false],[:IO]},:puts]},[],["hello"]}
iex> Code.eval_quoted fragment
hello
{:ok,[]}

By default, the quoted fragment is hygienic, and so does not have access to
variables outside its scope. Using var!(:name), we can disable this feature and
allow a quoted block to access variables in the containing scope. In this case,
we pass the binding to eval_quoted as a keyword list.

Chapter 22. Macros and Code Evaluation • 314

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> fragment = quote do: IO.puts(var!(a))
{{:., [], [{:__aliases__, [alias: false], [:IO]}, :puts]}, [],
[{:var!, [context: Elixir, import: Kernel], [{:a, [], Elixir}]}]}

iex> Code.eval_quoted fragment, [a: "cat"]
cat
{:ok,[a: "cat"]}

Code.string_to_quoted converts a string containing code to its quoted form, and
Macro.to_string converts a code fragment back into a string.

iex> fragment = Code.string_to_quoted("defmodule A do def b(c) do c+1 end end")
{:ok,{:defmodule,[line: 1],[{:__aliases__,[line: 1],[:A]},
[do: {:def,[line: 1],[{:b,[line: 1],[{:c,[line: 1],nil}]},
[do: {:+,[line: 1],[{:c,[line: 1],nil},1]}]]}]]}}
iex> Macro.to_string(fragment)
"{:ok, defmodule(A) do\n def(b(c)) do\n c + 1\n end\nend}"

We can also evaluate a string directly using Code.eval_string.

iex> Code.eval_string("[a, a*b, c]", [a: 2, b: 3, c: 4])
{[2,6,4],[a: 2, b: 3, c: 4]}

Macros and Operators
(This is definitely dangerous ground.)

We can override the unary and binary operators in Elixir using macros. To
do so, we need to remove any existing definition first.

For example, the operator + (which adds two numbers) is defined in the Kernel
module. To remove the Kernel definition and substitute our own, we’d need to
do something like the following (which redefines addition to concatenate the
string representation of the left and right arguments).

macros/operators.ex
defmodule Operators do

defmacro a + b do
quote do
to_string(unquote(a)) <> to_string(unquote(b))

end
end

end

defmodule Test do
IO.puts(123 + 456) #=> "579"
import Kernel, except: [+: 2]
import Operators
IO.puts(123 + 456) #=> "123456"

end

IO.puts(123 + 456) #=> "579"

report erratum • discuss

Macros and Operators • 315

http://media.pragprog.com/titles/elixir16/code/macros/operators.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Note that the macro’s definition is lexically scoped—the + operator is overrid-
den from the point when we import the Operators module through the end of
the module that imports it. We could also have done the import inside a single
method, and the scoping would be just that method.

Digging Deeper
The Code and Macro modules contain the functions that manipulate the internal
representation of code.

Check the source of the Kernel module for a list of the majority of the operator
macros, along with macros for things such as def, defmodule, alias, and so on.
If we look at the source code, we’ll see the calling sequence for these. However,
many of the bodies will be absent, as the macros are defined within the Elixir
source.

Digging Ridiculously Deep
Here’s the internal representation of a simple expression:

iex(1)> quote do: 1 + 2
{:+, [context: Elixir, import: Kernel], [1, 2]}

It’s just a three-element tuple. In this particular case, the first element is the
function (or macro), the second is housekeeping metadata, and the third is
the arguments.

We know we can evaluate this code fragment using eval_quoted, and we can
save typing by leaving off the metadata:

iex> Code.eval_quoted {:+, [], [1,2]}
{3,[]}

And now we can start to see the promise (and danger) of a homoiconic lan-
guage (a language in which the internal representation is expressed in the
language itself). Because code is just tuples and because we can manipulate
those tuples, we have the ability to rewrite the definitions of existing functions.
We can create new code on the fly, and we can do it in a safe way because
we can control the scope of both the changes and the access to variables.

Next we’ll look at protocols, a way of adding functionality to built-in code and
of integrating our code into other people’s modules.

Chapter 22. Macros and Code Evaluation • 316

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: MacrosAndCodeEvaluation-3

The Elixir test framework, ExUnit, uses some clever code-quoting tricks.
For example, if you assert

assert 5 < 4

you’ll get the error

Assertion with < failed
code: 5 < 4
lhs: 5
rhs: 4

The test code parsed the assertion parameter into the left-hand side, the
operator, and the right-hand side.

The Elixir source code is on GitHub (at https://github.com/elixir-lang/elixir). The
implementation of this is in the file elixir/lib/ex_unit/lib/ex_unit/assertions.ex. Spend
some time reading this file, and work out how it implements this trick.

(Hard) Once you’ve done that, see if you can use the same technique to
implement a function that takes an arbitrary arithmetic expression and
returns a natural-language version.

explain do: 2 + 3 * 4
#=> multiply 3 and 4, then add 2

report erratum • discuss

Digging Ridiculously Deep • 317

http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-3
https://github.com/elixir-lang/elixir
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 23

Linking Modules: Behavio(u)rs and use
When we wrote our OTP server, we wrote a module that started with the code

defmodule Sequence.Server do
use GenServer
...

In this chapter we’ll explore what lines such as use GenServer actually do, and
how we can write modules that extend the capabilities of other modules that
use them.

Behaviours
An Elixir behaviour is nothing more than a list of functions. A module that
declares that it implements a particular behaviour must implement all of the
associated functions. If it doesn’t, Elixir will generate a compilation warning.
You can think of a behaviour definition as being like an abstract base class
in some object-oriented languages.

A behaviour is therefore a little like an interface in Java. A module uses it to
declare that it implements a particular interface. For example, an OTP
GenServer should implement a standard set of callbacks (handle_call, handle_cast,
and so on). By declaring that our module implements that behaviour, we let
the compiler validate that we have actually supplied the necessary interface.
This reduces the chance of an unexpected runtime error.

Defining Behaviours
We define a behaviour with @callback definitions.

For example, the mix utility can fetch dependencies from various source-code
control systems. Out of the box, it supports git and the local filesystem. How-
ever, the interface to the source-code control system (which mix abbreviates

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

internally as SCM) is defined using a behaviour, allowing new version-control
systems to be added cleanly.

The behaviour is defined in the module Mix.Scm:

defmodule Mix.SCM do
@moduledoc """
This module provides helper functions and defines the behaviour
required by any SCM used by Mix.
"""

@type opts :: Keyword.t

@doc """
Returns a boolean if the dependency can be fetched or it is meant to
be previously available in the filesystem.

Local dependencies (i.e. non fetchable ones) are automatically
recompiled every time the parent project is compiled.
"""
@callback fetchable? :: boolean

@doc """
Returns a string representing the SCM. This is used when printing
the dependency and not for inspection, so the amount of information
should be concise and easy to spot.
"""
@callback format(opts) :: String.t

and so on for 8 more callbacks

This module defines the interface that modules implementing the behaviour
must support. It uses @callback to define the functions in the behaviour. But
the syntax looks a little different. That’s because we’re using a minilanguage:
Erlang type specifications. For example, the fetchable? function takes no
parameters and returns a Boolean. The format function takes a parameter of
type opts (which is defined near the top of the code to be a keyword list) and
returns a string. There’s more information on these type specifications on
page 361.

In addition to the type specification, we can include module- and function-
level documentation with our behaviour definitions.

Declaring Behaviours
Now that we’ve defined the behaviour, we can declare that another module
implements it using the @behaviour attribute. Here’s the start of the Git imple-
mentation for mix:

Chapter 23. Linking Modules: Behavio(u)rs and use • 320

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmodule Mix.SCM.Git do
@behaviour Mix.SCM

def fetchable? do
true

end

def format(opts) do
opts[:git]

end

. . .
end

The module defines each of the functions declared as callbacks in Mix.SCM.
This module will compile cleanly. However, imagine we’d misspelled fetchable:

defmodule Mix.SCM.Git do
@behaviour Mix.SCM

def fetchible? do➤

true
end

def format(opts) do
opts[:git]

end

. . .
end

When we compile the module, we’d get this error:

git.ex:1: warning: undefined behaviour function fetchable?/0 (for behaviour Mix.SCM)

Behaviours give us a way of both documenting and enforcing the public
functions that a module should implement.

Taking It Further
In the implementation of Mix.SCM for Git, we created a bunch of functions that
implemented the behaviour. But those are unlikely to be the only functions
in this module. And, unless you’re intimately familiar with the Mix.SCM
behaviour, you won’t be able to tell the callback functions from the rest.

To remedy this, you can flag the callback functions with the @impl attribute.
This takes a parameter: either true or the name of a behaviour (guess which
one I prefer).

report erratum • discuss

Behaviours • 321

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmodule Mix.SCM.Git do
@behaviour Mix.SCM

def init(arg) do # plain old function
...

end

@impl Mix.SCM # callback
def fetchable? do

true
end

@impl Mix.SCM # callback
def format(opts) do

opts[:git]
end

use and __using__
In one sense, use is a trivial function. You pass it a module along with an
optional argument, and it invokes the function or macro __using__ in that
module, passing it the argument.

Yet this simple interface gives you a powerful extension facility. For example,
in our unit tests we write use ExUnit.Case and we get the test macro and assertion
support. When we write an OTP server, we write use GenServer and we get both
a behaviour that documents the gen_server callback and default implementations
of those callbacks.

Typically, the __using__ callback will be implemented as a macro, as it will be
used to invoke code in the original module.

Putting It Together—Tracing Method Calls
Let’s work through a larger example. We want to write a module called Tracer.
If we use Tracer in another module, entry and exit tracing will be added to any
subsequently defined function. For example, given the following:

use/tracer.ex
defmodule Test do

use Tracer
def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)
def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)
Test.add_list([5,6,7,8])

Chapter 23. Linking Modules: Behavio(u)rs and use • 322

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/use/tracer.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

we’d get this output:

==> call puts_sum_three(1, 2, 3)
6
<== returns 6
==> call add_list([5,6,7,8])
<== returns 26

My approach to writing this kind of code is to start by exploring what we have
to work with, and then to generalize. The goal is to metaprogram as little as
possible.

It looks as if we have to override the def macro, which is defined in Kernel. So
let’s do that and see what gets passed to def when we define a method.

use/tracer1.ex
defmodule Tracer do

defmacro def(definition, do: _content) do
IO.inspect definition
quote do: {}

end
end

defmodule Test do
import Kernel, except: [def: 2]
import Tracer, only: [def: 2]

def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)
def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)
Test.add_list([5,6,7,8])

This outputs

{:puts_sum_three, [line: 12],
[{:a, [line: 12], nil}, {:b, [line: 12], nil}, {:c, [line: 12], nil}]}

{:add_list, [line: 13], [{:list, [line: 13], nil}]}
** (UndefinedFunctionError) undefined function: Test.puts_sum_three/3

The definition part of each method is a three-element tuple. The first element
is the name, the second is the line on which it is defined, and the third is a
list of the parameters, where each parameter is itself a tuple.

We also get an error: puts_sum_three is undefined. That’s not surprising—we
intercepted the def that defined it, and we didn’t create the function.

report erratum • discuss

Putting It Together—Tracing Method Calls • 323

http://media.pragprog.com/titles/elixir16/code/use/tracer1.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

You may be wondering about the form of the macro definition: defmacro def(defi-
nition, do: _content)…. The do: in the parameters is not special syntax: it’s a pattern
match on the block passed as the function body, which is a keyword list.

You may also be wondering if we have affected the built-in Kernel.def macro.
The answer is no. We’ve created another macro, also called def, which is defined
in the scope of the Tracer module. In our Test module we tell Elixir not to import
the Kernel version of def but instead to import the version from Tracer. Shortly,
we’ll make use of the fact that the original Kernel implementation is unaffected.

Let’s see if we can define a real function given this information. That turns
out to be surprisingly easy. We already have the two arguments passed to
def. All we have to do is pass them on.

use/tracer2.ex
defmodule Tracer do

defmacro def(definition, do: content) do
quote do
Kernel.def(unquote(definition)) do

unquote(content)
end

end
end

end

defmodule Test do
import Kernel, except: [def: 2]
import Tracer, only: [def: 2]

def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)
def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)
Test.add_list([5,6,7,8])

When we run this, we see 6, the output from puts_sum_three.

Now it’s time to add some tracing.

use/tracer3.ex
defmodule Tracer do

def dump_args(args) do
args |> Enum.map(&inspect/1) |> Enum.join(", ")

end

def dump_defn(name, args) do
"#{name}(#{dump_args(args)})"

end

defmacro def(definition={name,_,args}, do: content) do
quote do

Chapter 23. Linking Modules: Behavio(u)rs and use • 324

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/use/tracer2.ex
http://media.pragprog.com/titles/elixir16/code/use/tracer3.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Kernel.def(unquote(definition)) do
IO.puts "==> call: #{Tracer.dump_defn(unquote(name), unquote(args))}"
result = unquote(content)
IO.puts "<== result: #{result}"
result

end
end

end
end

defmodule Test do
import Kernel, except: [def: 2]
import Tracer, only: [def: 2]

def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)
def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)
Test.add_list([5,6,7,8])

Looking good:

==> call: puts_sum_three(1, 2, 3)
6
<== result: 6
==> call: add_list([5,6,7,8])
<== result: 26

Let’s package our Tracer module so clients only have to add use Tracer to their
own modules. We’ll implement the __using__ callback. The tricky part here is
differentiating between the two modules: Tracer and the module that uses it.

use/tracer4.ex
defmodule Tracer do

def dump_args(args) do
args |> Enum.map(&inspect/1) |> Enum.join(", ")

end

def dump_defn(name, args) do
"#{name}(#{dump_args(args)})"

end

defmacro def(definition={name,_,args}, do: content) do
quote do
Kernel.def(unquote(definition)) do

IO.puts "==> call: #{Tracer.dump_defn(unquote(name), unquote(args))}"
result = unquote(content)
IO.puts "<== result: #{result}"
result

end
end

end

report erratum • discuss

Putting It Together—Tracing Method Calls • 325

http://media.pragprog.com/titles/elixir16/code/use/tracer4.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmacro __using__(_opts) do
quote do

import Kernel, except: [def: 2]
import unquote(__MODULE__), only: [def: 2]

end
end

end

defmodule Test do
use Tracer
def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)
def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)
Test.add_list([5,6,7,8])

Use use
Elixir behaviours are fantastic—they let you easily inject functionality into
modules you write. And they’re not just for library creators—use them in your
own code to cut down on duplication and boilerplate.

Although behaviours let you add to modules that you are writing, you some-
times need to extend the functionality of modules written by others—code
that you can’t change. Fortunately, Elixir comes with protocols, the subject
of the next chapter.

Your Turn
➤ Exercise: LinkingModules-BehavioursAndUse-1

In the body of the def macro, there’s a quote block that defines the actual
method. It contains

IO.puts "==> call: #{Tracer.dump_dfn(unquote(name), unquote(args))}"
result = unquote(content)
IO.puts "<== result: #{result}"

Why does the first call to puts have to unquote the values in its interpola-
tion but the second call does not?

➤ Exercise: LinkingModules-BehavioursAndUse-2
The built-in module IO.ANSI defines functions that represent ANSI escape
sequences. You can use it to build output than will display (for example)
colors and bold, inverse, or underlined text (assuming the terminal sup-
ports it).

Chapter 23. Linking Modules: Behavio(u)rs and use • 326

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-2
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> import IO.ANSI
iex> IO.puts ["Hello, ", white(), green_background(), "world!"]
Hello, world!

Explore the module, and use it to colorize our tracing’s output.

Why does passing a list of strings to IO.puts work?

➤ Exercise: LinkingModules-BehavioursAndUse-3
(Hard) Try adding a method definition with a guard clause to the Test
module. You’ll find that the tracing no longer works.

– Find out why.
– See if you can fix it.

report erratum • discuss

Use use • 327

http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 24

Protocols—Polymorphic Functions
We have used the inspect function many times in this book. It returns a
printable representation of any value as a binary (which is what we hard-core
folks call strings).

But stop and think for a minute. Just how can Elixir, which doesn’t have
objects, know what to call to do the conversion to a binary? You can pass
inspect anything, and Elixir somehow makes sense of it.

It could be done using guard clauses:

def inspect(value) when is_atom(value), do: ...
def inspect(value) when is_binary(value), do: ...

: :

But there’s a better way.

Elixir has the concept of protocols. A protocol is a little like the behaviours
we saw in the previous chapter in that it defines the functions that must be
provided to achieve something. But a behaviour is internal to a module—the
module implements the behaviour. Protocols are different—you can place a
protocol’s implementation completely outside the module. This means you
can extend modules’ functionality without having to add code to them—in
fact, you can extend the functionality even if you don’t have the modules’
source code.

Defining a Protocol
Protocol definitions are very similar to basic module definitions. They can
contain module- and function-level documentation (@moduledoc and @doc), and
they will contain one or more function definitions. However, these functions
will not have bodies—they are there simply to declare the interface that the
protocol requires.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

For example, here is the definition of the Inspect protocol:

defprotocol Inspect do
@fallback_to_any true

def inspect(thing, opts)
end

Just like a module, the protocol defines one or more functions. But we
implement the code separately.

Implementing a Protocol
The defimpl macro lets you give Elixir the implementation of a protocol for one
or more types. The code that follows is the implementation of the Inspect pro-
tocol for PIDs and references.

defimpl Inspect, for: PID do
def inspect(pid, _opts) do

"#PID" <> IO.iodata_to_binary(pid_to_list(pid))
end

end

defimpl Inspect, for: Reference do
def inspect(ref, _opts) do

'#Ref' ++ rest = :erlang.ref_to_list(ref)
"#Reference" <> IO.iodata_to_binary(rest)

end
end

Finally, the Kernel module implements inspect, which calls Inspect.inspect with its
parameter. This means that when you call inspect(self), it becomes a call to
Inspect.inspect(self). And because self is a PID, this in turn resolves to something
like "#PID<0.25.0>".

Behind the scenes, defimpl puts the implementation for each protocol-and-type
combination into a separate module. The protocol for Inspect for the PID type
is in the module Inspect.PID. And because you can recompile modules, you can
change the implementation of functions accessed via protocols.

iex> inspect self
"#PID<0.25.0>"
iex> defimpl Inspect, for: PID do
...> def inspect(pid, _) do
...> "#Process: " <> IO.iodata_to_binary(:erlang.pid_to_list(pid)) <> "!!"
...> end
...> end
iex:3: redefining module Inspect.PID
{:module, Inspect.PID, <<70,79....
iex> inspect self
"#Process: <0.25.0>!!"

Chapter 24. Protocols—Polymorphic Functions • 330

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The Available Types
You can define implementations for one or more of the following types:

FunctionFloatBitStringAtomAny
PortPIDMapListInteger

TupleReferenceRecord

The type BitString is used in place of Binary.

The type Any is a catchall, allowing you to match an implementation with any
type. Just as with function definitions, you’ll want to put the implementations
for specific types before an implementation for Any.

You can list multiple types on a single defimpl. For example, the following
protocol can be called to determine whether a type is a collection:

protocols/is_collection.exs
defprotocol Collection do

@fallback_to_any true
def is_collection?(value)

end

defimpl Collection, for: [List, Tuple, BitString, Map] do
def is_collection?(_), do: true

end

defimpl Collection, for: Any do
def is_collection?(_), do: false

end

Enum.each [1, 1.0, [1,2], {1,2}, %{}, "cat"], fn value ->
IO.puts "#{inspect value}: #{Collection.is_collection?(value)}"

end

We write defimpl stanzas for the collection types: List, Tuple, BitString, and Map.
But what about the other types? To handle those, we use the special type Any
in a second defimpl. If we use Any, though, we also have to add an annotation
to the protocol definition. That’s what the @fallback_to_any line does.

This produces

1: false
1.0: false
[1,2]: true
{1,2}: true
%{}: true
"cat": true

report erratum • discuss

The Available Types • 331

http://media.pragprog.com/titles/elixir16/code/protocols/is_collection.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Your Turn
➤ Exercise: Protocols-1

A basic Caesar cypher consists of shifting the letters in a message by a
fixed offset. For an offset of 1, for example, a will become b, b will become
c, and z will become a. If the offset is 13, we have the ROT13 algorithm.

Lists and binaries can be stringlike. Write a Caesar protocol that applies
to both. It would include two functions: encrypt(string, shift) and rot13(string).

➤ Exercise: Protocols-2
Using a list of words in your language, write a program to look for words
where the result of calling rot13(word) is also a word in the list. (For various
English word lists, look at http://wordlist.sourceforge.net/. The SCOWL collection
looks promising, as it already has words divided by size.)

Protocols and Structs
Elixir doesn’t have classes, but (perhaps surprisingly) it does have user-defined
types. It pulls off this magic using structs and a few conventions.

Let’s play with a simple struct. Here’s the definition:

protocols/basic.exs
defmodule Blob do

defstruct content: nil
end

And here we use it in IEx:

iex> c "basic.exs"
[Blob]
iex> b = %Blob{content: 123}
%Blob{content: 123}
iex> inspect b
"%Blob{content: 123}"

It looks for all the world as if we’ve created some new type, the blob. But that’s
only because Elixir is hiding something from us. By default, inspect recognizes
structs. If we turn this off using the structs: false option, inspect reveals the true
nature of our blob value:

iex> inspect b, structs: false
"%{__struct__: Blob, content: 123}"

A struct value is actually just a map with the key __struct__ referencing the
struct’s module (Blob in this case) and the remaining elements containing the
keys and values for this instance. The inspect implementation for maps checks

Chapter 24. Protocols—Polymorphic Functions • 332

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-2
http://wordlist.sourceforge.net/
http://media.pragprog.com/titles/elixir16/code/protocols/basic.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

for this—if you ask it to inspect a map containing a key __struct__ that references
a module, it displays it as a struct.

Many built-in types in Elixir are represented as structs internally. It’s
instructive to try creating values and inspecting them with structs: false.

Built-in Protocols
Elixir comes with the following protocols:

• Enumerable and Collectable
• Inspect
• List.Chars
• String.Chars

To play with these, let’s work with MIDI files.

A MIDI file consists of a sequence of variable-length frames. Each frame
contains a four-character type, a 32-bit length, and then length bytes of data.1

We’ll define a module that represents the MIDI file content as a struct, because
the struct lets us use it with protocols. The file also defines a submodule for
the individual frame structure.

protocols/midi.exs
defmodule Midi do

defstruct(content: <<>>)

defmodule Frame do
defstruct(

type: "xxxx",
length: 0,
data: <<>>

)

def to_binary(%Midi.Frame{type: type, length: length, data: data}) do
<<

type::binary-4,
length::integer-32,
data::binary

>>
end

end

def from_file(name) do
%Midi{content: File.read!(name)}

end
end

1. https://www.csie.ntu.edu.tw/~r92092/ref/midi/

report erratum • discuss

Built-in Protocols • 333

http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
https://www.csie.ntu.edu.tw/~r92092/ref/midi/
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Built-in Protocols: Enumerable and Collectable
The Enumerable protocol is the basis of all the functions in the Enum module—any
type implementing it can be used as a collection argument to Enum functions.

We’re going to implement Enumerable for our Midi structure, so we’ll need to
wrap the implementation in something like this:

defimpl Enumerable, for: Midi do
...

end

The protocol is defined in terms of four functions:

defprotocol Enumerable do
def count(collection)
def member?(collection, value)
def reduce(collection, acc, fun)
def slice(collection)

end

count returns the number of elements in the collection, member? is truthy if the
collection contains value, and reduce applies the given function to successive
values in the collection and the accumulator; the value it reduces becomes
the next accumulator. Finally, slice is used to create a subset of a collection.
Perhaps surprisingly, all the Enum functions can be defined in terms of
these four.

However, life isn’t that simple. Maybe you’re using Enum.find to find a value in
a large collection. Once you’ve found it, you want to halt the iteration—con-
tinuing is pointless. Similarly, you may want to suspend an iteration and
resume it sometime later. These two features become particularly important
when we talk about streams, which let you enumerate a collection lazily.

We’ll start with the most difficult function to implement, Enumerable.reduce/3. It
is worth reading the documentation for it before we start:

iex> h Enumerable.reduce

def reduce(enumerable, acc, fun)

@spec reduce(t(), acc(), reducer()) :: result()

Reduces the enumerable into an element.

Most of the operations in Enum are implemented in terms of reduce. This
function should apply the given t:reducer/0 function to each item in the
enumerable and proceed as expected by the returned accumulator.

See the documentation of the types t:result/0 and t:acc/0 for more information.

Chapter 24. Protocols—Polymorphic Functions • 334

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Examples

As an example, here is the implementation of reduce for lists:

def reduce(_, {:halt, acc}, _fun),
do: {:halted, acc}

def reduce(list, {:suspend, acc}, fun),
do: {:suspended, acc, &reduce(list, &1, fun)}

def reduce([], {:cont, acc}, _fun),
do: {:done, acc}

def reduce([h | t], {:cont, acc}, fun),
do: reduce(t, fun.(h, acc), fun)

The first two function heads do housekeeping: they handle the cases where
the enumeration has been halted or suspended. Here are the versions for our
MIDI enumerator:

protocols/midi.exs
def _reduce(_content, {:halt, acc}, _fun) do

{:halted, acc}
end

def _reduce(content, {:suspend, acc}, fun) do
{:suspended, acc, &_reduce(content, &1, fun)}

end

The next two function heads do the actual iteration. In the list example in
the documentation, you’ll see the typical pattern: check for the end condition
([]) and the recursive step [h|t].

We’ll do the same with our MIDI file, but we’ll use binaries instead of doing
list pattern matching:

protocols/midi.exs
def _reduce(_content = "", {:cont, acc}, _fun) do

{:done, acc}
end

def _reduce(<<
type::binary-4,

length::integer-32,
data::binary-size(length),
rest::binary

>>,
{:cont, acc},
fun

) do
frame = %Midi.Frame{type: type, length: length, data: data}
_reduce(rest, fun.(frame, acc), fun)

end

report erratum • discuss

Built-in Protocols • 335

http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

See how we split out the binary content of a frame, then wrap it into a Midi.Frame
struct before passing it back. This means that folks who use our MIDI module
will only see these frame structures, and not the raw data.

Before we try this, there’s one little tweak we have to make. You may have
noticed that all my functions were named _reduce, with a leading underscore.
That’s because they need to work on the content of the MIDI file, and not on
the structure that wraps that content. We have a single function head that
implements the actual reduce function, and that then forwards the call on
to _reduce:

protocols/midi.exs
def reduce(%Midi{content: content}, state, fun) do

_reduce(content, state, fun)
end

At this point we have enough code to try it out. I’ve included a MIDI file in
the code/protocols directory for you to play with (courtesy of midiworld.com).2

iex midi.exs
warning: function count/1 required by protocol Enumerable is not

implemented (in module Enumerable.Midi) midi.exs:21

warning: function member?/2 required by protocol Enumerable is not
implemented (in module Enumerable.Midi) midi.exs:21

warning: function slice/1 required by protocol Enumerable is not
implemented (in module Enumerable.Midi) midi.exs:21

Interactive Elixir (1.6.0-rc.0) - press Ctrl+C to exit (type h() ENTER for help)
iex> midi = Midi.from_file("dueling-banjos.mid")
%Midi{

content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
0, 0, 0, 66, 0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97,
110, 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, ...>>

}
iex> Enum.take(midi, 2)
[

%Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"},
%Midi.Frame{

data: <<0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97, 110,
106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, 101, 114, 97, 110,
99, 101, 0, 255, 88, 4, 4, 2, 24, 8, 0, 255, 89, 2, 0, 0, ...>>,

length: 66,
type: "MTrk"

}
]

2. midiworld.com

Chapter 24. Protocols—Polymorphic Functions • 336

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://midiworld.com
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

First, see how we get warnings because we haven’t yet implemented the full
Enumerable protocol. Normally this would worry me, but I happen to know that
we won’t be using those functions just yet.

Next, look at how we called Enum.take/2 and got back two Midi.Frame structures.
That’s because take/2 is defined in terms of reduce/3, and we supplied an
implementation of it.

So far, so good. Let’s implement count/1 next.

If the collection is countable, the count function returns a tuple containing
{:ok, count}. If it isn’t countable (perhaps it is being read one piece at a time
from an external source), count should return {:ok, __MODULE__}.

In our case, we have the whole MIDI file available in memory, and we have a
way to traverse it using reduce, so counting it easy:

protocols/midi.exs
def count(midi = %Midi{}) do

frame_count = Enum.reduce(midi, 0, fn (_, count) -> count+1 end)
{ :ok, frame_count }

end

Let’s try it:

iex> r Enumerable.Midi
warning: redefining module Midi (current version defined in memory)

midi.exs:2

warning: redefining module Midi.Frame (current version defined in memory)
midi.exs:6

warning: redefining module Enumerable.Midi (current version defined in memory)
midi.exs:21

warning: function member?/2 required by protocol Enumerable is not
implemented (in module Enumerable.Midi) midi.exs:21

warning: function slice/1 required by protocol Enumerable is not
implemented (in module Enumerable.Midi) midi.exs:21

{:reloaded, Enumerable.Midi, [Midi.Frame, Midi, Enumerable.Midi]}
iex> Enum.count midi
9

On to member? and slice.

Technically, both of these can be implemented using reduce. But the Elixir
team recognized that some types of collection have more direct ways to test
membership and partition elements. For example, if you implement a set
using a map, then testing to see if a key is present can be done in constant

report erratum • discuss

Built-in Protocols • 337

http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

time. If you have an array-like structure with fixed-length elements, you can
split it into two in (almost) constant time.

So the implementations of both member? and slice depend on the characteristics
of your collection. In our case, we don’t currently have a fast way of testing
for membership, nor do we have a fast way to slice a MIDI file into two. In
both cases, we return an error tuple. This doesn’t actually cause an error for
the user; it just tells Enumerable to fall back to a naive algorithm.

protocols/midi.exs
def member?(%Midi{}, %Midi.Frame{}) do

{ :error, __MODULE__ }
end

def slice(%Midi{}) do
{ :error, __MODULE__ }

end

And with that, we’re done. Our Midi type is enumerable, and you can use every
function in Enum on it.

This gives us the ability to treat a MIDI stream as a collection of MIDI frames.
But how do we assemble frames back into a MIDI stream? That’s what we’ll
address next.

Collectable

We’ve already seen Enum.into/2. It takes something that’s enumerable and creates
a new collection from it:

iex> 1..4 |> Enum.into([])
[1, 2, 3, 4]
iex> [{1, 2}, {"a", "b"}] |> Enum.into(%{})
%{1 => 2, "a" => "b"}

The target of Enum.into must implement the Collectable protocol. This defines a
single function, somewhat confusingly also called into. This function returns
a two-element tuple. The first element is the initial value of the target collec-
tion. The second is a function to be called to add each item to the collection.
(If this reminds you of the second and third parameters passed to Enum.reduce,
that’s because in a way into is the opposite of reduce.)

Let’s look at the code first:

protocols/midi.exs
defimpl Collectable, for: Midi do

use Bitwise

Chapter 24. Protocols—Polymorphic Functions • 338

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://media.pragprog.com/titles/elixir16/code/protocols/midi.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def into(%Midi{content: content}) do
{
content,
fn

acc, {:cont, frame = %Midi.Frame{}} ->
acc <> Midi.Frame.to_binary(frame)

acc, :done ->
%Midi{content: acc}

_, :halt ->
:ok

end
}

end
end

It works like this:

• Enum.into calls the into function for Midi, passing it the target value—Midi{con-
tent: content} in this case.

• Midi.into returns a tuple. The first element is the current content of the
target. This acts as the initial value for an accumulator. The second ele-
ment of the tuple is a function.

• Enum.into then calls this function, passing it the accumulator and a com-
mand. If the command is :done, the iteration over the collection being injected
into the MIDI stream has finished, so we return a new Midi structure using
the accumulator as a value. If the command is :halt, the iteration has ter-
minated early and nothing needs to be done.

• The real work is done when the function is passed the {:cont, frame} com-
mand. Here is where the Collectable appends the binary representation of
the next frame to the accumulator.

We can call it in IEx:

iex> list = Enum.to_list(midi)
[

%Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"},
%Midi.Frame{

data: <<0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97, 110,
106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, 101, 114, 97, 110,
99, 101, 0, 255, 88, 4, 4, 2, 24, 8, 0, 255, 89, 2, 0, 0, ...>>,

length: 66,
type: "MTrk"

},
. . .

]

report erratum • discuss

Built-in Protocols • 339

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

iex> new_midi = Enum.into(list, %Midi{})
%Midi{

content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
0, 0, 0, 66, 0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97,
110, 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, ...>>

}
iex> new_midi == midi
true
iex> Enum.take(new_midi, 1)
[%Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"}]

Because the into function uses the initial value of the target collection, we can
use it to append to a MIDI stream:

iex> midi2 = %Midi{}
%Midi{content: ""}
iex> midi2 = Enum.take(midi, 1) |> Enum.into(midi2)
%Midi{content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120>>}
iex> midi2 = [Enum.at(midi, 3)] |> Enum.into(midi2)
%Midi{

content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
0, 0, 8, 34, 0, 255, 33, 1, 0, 0, 193, 25, 0, 177, 7, 127, 0, 10, 100, 0,
64, 0, 134, 24, 145, 43, 99, 22, 43, 0, 15, ...>>

}
iex> Enum.count(midi2)
2

Remember the Big Picture

If you think all this enumerable/collectable stuff is complicated—well, you’re
correct. It is. In part that’s because these conventions allow all enumerable
values to be used both eagerly and lazily. And when you’re dealing with big
(or even infinite) collections, this is a big deal.

Built-in Protocols: Inspect
This is the protocol that is used to inspect a value. The rule is simple—if you
can return a representation that is a valid Elixir literal, do so. Otherwise,
prefix the representation with #Typename.

We could just delegate the inspect function to the Elixir default. (That’s what
we’ve been doing so far.) But we can do better. Not surprisingly, we do that
by implementing the Inspect protocol. We’ll do it for both the overall Midi type
and for the individual Midi.Frames.

protocols/midi_inspect.exs
defimpl Inspect, for: Midi do

def inspect(%Midi{content: <<>>}, _opts) do
"#Midi[«empty»]"

end

Chapter 24. Protocols—Polymorphic Functions • 340

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/protocols/midi_inspect.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

def inspect(midi = %Midi{}, _opts) do
content =
Enum.map(midi, fn frame-> Kernel.inspect(frame) end)
|> Enum.join("\n")

"#Midi[\n#{content}\n]"
end

end

defimpl Inspect, for: Midi.Frame do
def inspect(%Midi.Frame{type: "MThd",

length: 6,
data: <<

format::integer-16,
tracks::integer-16,

division::bits-16
>>},

_opts) do
beats = decode(division)
"#Midi.Header{Midi format: #{format}, tracks: #{tracks}, timing: #{beats}}"

end

def inspect(%Midi.Frame{type: "MTrk", length: length, data: data}, _opts) do
"#Midi.Track{length: #{length}, data: #{Kernel.inspect(data)}"

end

defp decode(<< 0::1, beats::15>>) do
"♩ = #{beats}"

end

defp decode(<< 1::1, fps::7, beats::8>>) do
"#{-fps} fps, #{beats}/frame"

end
end

Run the code in IEx:

iex> midi = Midi.from_file "dueling-banjos.mid"
#Midi[
#Midi.Header{Midi format: 1, tracks: 8, timing: ♩ = 120}
#Midi.Track{length: 66, data: <<0, 255, 3, 14, 68, 117, 101, ...>>
. . .
#Midi.Track{length: 6291, data: <<0, 255, 33, 1, 0, 0, 185, ... >>
#Midi.Track{length: 9, data: <<0, 255, 33, 1, 0, 0, 255, 47, 0>>
]

I added a little bit of decoding for the header frame, but just treated the track
frames as binary. You could extend this to do a full decode of each track
frame too.

There’s a wrinkle here. If you pass structs: false to IO.inspect (or Kernel.inspect), it
never calls our inspect function. Instead, it formats it as a struct.

report erratum • discuss

Built-in Protocols • 341

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Better Formatting with Algebra Documents
The formatting of our MIDI stream leaves a little to be desired: there’s no
indentation or reasonable line wrapping.

To fix this, we use a feature called algebra documents. An algebra document
is a tree structure that represents some data you’d like to pretty-print.3 Your
job is to create the structure based on the data you want to inspect, and Elixir
will then find a nice way to display it.

I’d like the inspect string to show the nesting of data, and to wrap long lines
honoring that nesting.

We do this by having our inspect function return an algebra document rather
than a string. In that document, we indicate places where breaks are allowed
(but not required) and we show how the nesting works:

protocols/midi_algebra.exs
defimpl Inspect, for: Midi do

import Inspect.Algebra

def inspect(%Midi{content: <<>>}, _opts) do
"#Midi[«empty»]"

end

def inspect(midi = %Midi{}, opts) do
open = color("#Midi[", :map, opts)
close = color("]", :map, opts)
separator = color(",", :map, opts)

container_doc(
open,
Enum.to_list(midi),
close,
%Inspect.Opts{limit: 4},
fn frame, _opts -> Inspect.Midi.Frame.inspect(frame, opts) end,
separator: separator,
break: :strict

)
end

end

defimpl Inspect, for: Midi.Frame do
import Inspect.Algebra

def inspect(
%Midi.Frame{type: "MThd",

length: 6,
data: <<

3. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2200

Chapter 24. Protocols—Polymorphic Functions • 342

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/protocols/midi_algebra.exs
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2200
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

format::integer-16,
tracks::integer-16,
division::bits-16

>>
},

opts)
do

concat(
[

nest(
concat(
[

color("#Midi.Header{", :map, opts),
break(""),
"Midi format: #{format},",
break(" "),
"tracks: #{tracks},",
break(" "),
"timing: #{decode(division)}",

]
),
2

),
break(""),
color("}", :map, opts)

]
)

end

def inspect(%Midi.Frame{type: "MTrk", length: length, data: data}, opts) do
open = color("#Midi.Track{", :map, opts)
close = color("}", :map, opts)
separator = color(",", :map, opts)
content = [

length: length,
data: data

]

container_doc(
open,
content,
close,
%Inspect.Opts{limit: 15},
fn {key, value}, opts ->

key = color("#{key}:", :atom, opts)
concat(key, concat(" ", to_doc(value, opts)))

end,
separator: separator,
break: :strict

)
end

report erratum • discuss

Built-in Protocols • 343

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defp decode(<< 0::1, beats::15 >>) do
"♩ = #{beats}"

end

defp decode(<< 1::1, fps::7, beats::8 >>) do
"#{-fps} fps, #{beats}/frame"

end

defp decode(x) do
raise inspect x

end
end

On a narrow terminal window, we get this output:

iex> Midi.from_file "dueling-banjos.mid"
#Midi[

#Midi.Header{
Midi format: 1,
tracks: 8,
timing: ♩ = 120

},
#Midi.Track{

length: 66,
data: <<0, 255, 3, 14, 68, 117, 101, 108, 105,
110, 103, 32, 66, ...>>

},
#Midi.Track{

length: 1319,
data: <<0, 255, 33, 1, 0, 0, 192, 105, 0, 176, 7,
127, 0, ...>>

},
#Midi.Track{

length: 2082,
data: <<0, 255, 33, 1, 0, 0, 193, 25, 0, 177, 7,
127, 0, ...>>

},
...

]

For more information, see the documentation for Inspect.Algebra.

Built-in Protocols: List.Chars and String.Chars
The List.Chars protocol is used by Kernel.to_charlist to convert a value into a list of
characters (think single-quoted string).

The String.Chars protocol is used to convert a value to a string (binary, or double-
quoted string). This is the protocol used for string interpolation.

Chapter 24. Protocols—Polymorphic Functions • 344

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The protocols are implemented identically, except List.Chars requires that you
write a to_charlist function, and String.Chars requires you write to_string.

Although we could implement a String.Chars.to_string for our Midi struct, it probably
wouldn’t make much sense. What would you interpolate into the string?

Protocols Are Polymorphism
When you want to write a function that behaves differently depending on the
type of its arguments, you’re looking at a polymorphic function. Elixir protocols
give you a tidy and controlled way to implement this. Whether you’re integrat-
ing your types into the existing Elixir library or creating a new library with a
flexible interface, protocols let you package the behaviour in a well-documented
and disciplined way. And with that, we’re almost done. But when you write
about a language, there are always little details that don’t seem to fit anywhere.
That’s why the next chapter is full of odds and ends.

Your Turn
➤ Exercise: Protocols-3

Collections that implement the Enumerable protocol define count, member?,
reduce, and slice functions. The Enum module uses these to implement
methods such as each, filter, and map.

Implement your own versions of each, filter, and map in terms of reduce.

➤ Exercise: Protocols-4
In many cases, inspect will return a valid Elixir literal for the value being
inspected. Update the inspect function for structs so that it returns valid
Elixir code to construct a new struct equal to the value being inspected.

report erratum • discuss

Protocols Are Polymorphism • 345

http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-4
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

CHAPTER 25

More Cool Stuff
Elixir is packed with features that make coding a joy. This chapter contains
a smattering of them.

Writing Your Own Sigils
You know by now that you can create strings and regular-expression literals
using sigils:

string = ~s{now is the time}
regex = ~r{..h..}

Have you ever wished you could extend these sigils to add your own specific
literal types? You can.

When you write a sigil such as ~s{...}, Elixir converts it into a call to the
function sigil_s. It passes the function two values. The first is the string between
the delimiters. The second is a list containing any lowercase letters that
immediately follow the closing delimiter. (This second parameter is used to
pick up any options you pass to a regex literal, such as ~r/cat/if.)

Here’s the implementation of a sigil ~l that takes a multiline string and returns
a list containing each line as a separate string. We know that ~l… is converted
into a call to sigil_l, so we just write a simple function in the LineSigil module.

odds/line_sigil.exs
defmodule LineSigil do

@doc """
Implement the `~l` sigil, which takes a string containing
multiple lines and returns a list of those lines.

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/odds/line_sigil.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Example usage

iex> import LineSigil
nil
iex> ~l\"""
...> one
...> two
...> three
...> \"""
["one","two","three"]

"""
def sigil_l(lines, _opts) do

lines |> String.trim_trailing |> String.split("\n")
end

end

We can play with this in a separate module:

odds/line_sigil.exs
defmodule Example do

import LineSigil

def lines do
~l"""
line 1
line 2
and another line in #{__MODULE__}
"""

end
end

IO.inspect Example.lines

This produces ["line 1","line 2","and another line in Elixir.Example"].

Because we import the sigil_l function inside the example module, the ~l sigil
is lexically scoped to this module. Note also that Elixir performs interpolation
before passing the string to our method. That’s because we used a lowercase
l. If our sigil were ~L{…} and the function were renamed sigil_L, no interpolation
would be performed.

The predefined sigil functions are sigil_C, sigil_c, sigil_R, sigil_r, sigil_S, sigil_s, sigil_W,
and sigil_w. If you want to override one of these, you’ll need to explicitly import
the Kernel module and use an except clause to exclude it.

In this example, we used the heredoc syntax ("""). This passes our function a
multiline string with leading spaces removed. Sigil options are not supported
with heredocs, so we’ll switch to a regular literal syntax to play with them.

Chapter 25. More Cool Stuff • 348

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/odds/line_sigil.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Picking Up the Options
Let’s write a sigil that enables us to specify color constants. If we say ~c{red},
we’ll get 0xff0000, the RGB representation. We’ll also support the option h to
return an HSB value, so ~c{red}h will be {0,100,100}.

Here’s the code:

odds/color.exs
defmodule ColorSigil do

@color_map [
rgb: [red: 0xff0000, green: 0x00ff00, blue: 0x0000ff, # ...

],
hsb: [red: {0,100,100}, green: {120,100,100}, blue: {240,100,100}

]
]

def sigil_c(color_name, []), do: _c(color_name, :rgb)
def sigil_c(color_name, 'r'), do: _c(color_name, :rgb)
def sigil_c(color_name, 'h'), do: _c(color_name, :hsb)

defp _c(color_name, color_space) do
@color_map[color_space][String.to_atom(color_name)]

end

defmacro __using__(_opts) do
quote do

import Kernel, except: [sigil_c: 2]
import unquote(__MODULE__), only: [sigil_c: 2]

end
end

end

defmodule Example do
use ColorSigil

def rgb, do: IO.inspect ~c{red}
def hsb, do: IO.inspect ~c{red}h

end

Example.rgb #=> 16711680 (== 0xff0000)
Example.hsb #=> {0,100,100}

The three clauses for the sigil_c function let us select the colorspace to use
based on the option passed. As the single-quoted string 'r' is actually repre-
sented by the list [?r], we can use the string literal to pattern-match the options
parameter.

Because I’m overriding a built-in sigil, I decided to implement a __using__ macro
that automatically removes the Kernel version and adds our own (but only in
the lexical scope that calls use on our module).

report erratum • discuss

Writing Your Own Sigils • 349

http://media.pragprog.com/titles/elixir16/code/odds/color.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The fact that we can write our own sigils is liberating. But misuse could lead
to some pretty impenetrable code.

Your Turn
➤ Exercise: MoreCoolStuff-1

Write a sigil ~v that parses multiple lines of comma-separated data,
returning a list where each element is a row of data and each row is a list
of values. Don’t worry about quoting—just assume each field is separated
by a comma.

For example

csv = ~v"""
1,2,3
cat,dog
"""

would generate [["1","2","3"], ["cat","dog"]].

➤ Exercise: MoreCoolStuff-2
The function Float.parse converts leading characters of a string to a float,
returning either a tuple containing the value and the rest of the string,
or the atom :error.

Update your CSV sigil so that numbers are automatically converted:

csv = ~v"""
1,2,3.14
cat,dog
"""

should generate [[1.0,2.0,3.14], ["cat","dog"]].

➤ Exercise: MoreCoolStuff-3
(Hard) Sometimes the first line of a CSV file is a list of the column names.
Update your code to support this, and return the values in each row as
a keyword list, using the column names as the keys. Here’s an example:

csv = ~v"""
Item,Qty,Price
Teddy bear,4,34.95
Milk,1,2.99
Battery,6,8.00
"""

would generate

Chapter 25. More Cool Stuff • 350

report erratum • discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-3
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

[
[Item: "Teddy bear", Qty: 4, Price: 34.95],
[Item: "Milk", Qty: 1, Price: 2.99],
[Item: "Battery", Qty: 6, Price: 8.00]

]

Multi-app Umbrella Projects
It is unfortunate that Erlang chose to call self-contained bundles of code
apps. In many ways, they are closer to being shared libraries. And as your
projects grow, you may find yourself wanting to split your code into multiple
libraries, or apps. Fortunately, mix makes this painless.

To illustrate the process, we’ll create a simple Elixir evaluator. Given a set of
input lines, it will return the result of evaluating each. This will be one app.

To test it, we’ll need to pass in lists of lines. We’ve already written a trivial ~l
sigil that creates lists of lines for us, so we’ll make that sigil code into a sepa-
rate application.

Elixir calls these multi-app projects umbrella projects.

Create an Umbrella Project
We use mix new to create an umbrella project, passing it the --umbrella option.

$ mix new --umbrella eval
* creating README.md
* creating mix.exs
* creating apps

Compared to a normal mix project, the umbrella is pretty lightweight—just
a mix file and an apps directory.

Create the Subprojects
Subprojects are stored in the apps directory. There’s nothing special about
them—they are simply regular projects created using mix new. Let’s create our
two projects now:

$ cd eval/apps
$ mix new line_sigil
* creating README.md
... and so on

$ mix new evaluator
* creating README.md
... and so on

* creating test/evaluator_test.exs

report erratum • discuss

Multi-app Umbrella Projects • 351

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

At this point we can try out our umbrella project. Go back to the overall project
directory and try mix compile.

$ cd ..
$ mix compile
==> evaluator
Compiled lib/evaluator.ex
Generated evaluator app
==> line_sigil
Compiled lib/line_sigil.ex
Generated line_sigil app

Now we have an umbrella project containing two regular projects. Because
there’s nothing special about the subprojects, you can use all the regular mix
commands in them. At the top level, though, you can build all the subprojects
as a unit.

Making the Subproject Decision

The fact that subprojects are just regular mix projects means you don’t have
to worry about whether to start a new project using an umbrella. Simply start
as a simple project. If you later discover the need for an umbrella project,
create it and move your existing simple project into the apps directory.

The LineSigil Project
This project is trivial—just copy the LineSigil module from the previous section
into apps/line_sigil/lib/line_sigil.ex. Verify it builds by running mix compile—in either
the top-level directory or the line_sigil directory.

The Evaluator Project
The evaluator takes a list of strings containing Elixir expressions and evaluates
them. It returns a list containing the expressions intermixed with the value
of each. For example, given

a = 3
b = 4
a + b

our code will return

code> a = 3
value> 3
code> b = 4
value> 4
code> a + b
value> 7

Chapter 25. More Cool Stuff • 352

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We’ll use Code.eval_string to execute the Elixir expressions. To have the values
of variables pass from one expression to the next, we’ll also need to explicitly
maintain the current binding.

Here’s the code:

odds/eval/apps/evaluator/lib/evaluator.ex
defmodule Evaluator do

def eval(list_of_expressions) do
{ result, _final_binding } =

Enum.reduce(list_of_expressions,
{_result = [], _binding = binding()},
&evaluate_with_binding/2)

Enum.reverse result
end

defp evaluate_with_binding(expression, { result, binding }) do
{ next_result, new_binding } = Code.eval_string(expression, binding)
{ ["value> #{next_result}", "code> #{expression}" | result], new_binding }

end
end

Linking the Subprojects
Now we need to test our evaluator. It makes sense to use our ~l sigil to create
lists of expressions, so let’s write our tests that way.

odds/eval/apps/evaluator/test/evaluator_test.exs
defmodule EvaluatorTest do

use ExUnit.Case

import LineSigil

test "evaluates a basic expression" do
input = ~l"""
1 + 2
"""

output = ~l"""
code> 1 + 2
value> 3
"""

run_test input, output
end

test "variables are propagated" do
input = ~l"""
a = 123
a + 1
"""
output = ~l"""
code> a = 123

report erratum • discuss

Multi-app Umbrella Projects • 353

http://media.pragprog.com/titles/elixir16/code/odds/eval/apps/evaluator/lib/evaluator.ex
http://media.pragprog.com/titles/elixir16/code/odds/eval/apps/evaluator/test/evaluator_test.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

value> 123
code> a + 1
value> 124
"""

run_test input, output
end

defp run_test(lines, output) do
assert output == Evaluator.eval(lines)

end
end

But if we simply run this in the apps/evaluator directort, Elixir won’t be able to
find the LineSigil module, as we don’t have a dependency. Instead, just run the
tests from the top-level directory (the one containing the overall umbrella
project). Mix will automatically load all the child apps for you.

$ mix test
==> evaluator➤

..

Finished in 0.02 seconds
2 tests, 0 failures

Randomized with seed 334706
==> line_sigil➤

..

Finished in 0.04 seconds
1 doctest, 1 test, 0 failures

Randomized with seed 334706

The first stanza of test output is for the evaluator tests, and the second is for
line_sigil.

But Wait! There’s More!
We’ve reached the end of our Elixir exploration.

This book was never intended to be exhaustive. Instead, it is intended to hit
the highlights, and to give you enough information to start coding apps in
Elixir yourself.

That means there’s a lot more to learn, both about the language and about
how to write great apps in it.

And I think that’s fun. Enjoy!

Chapter 25. More Cool Stuff • 354

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

APPENDIX 1

Exceptions: raise and try, catch and throw
Elixir (like Erlang) takes the view that errors should normally be fatal to the
processes in which they occur. A typical Elixir application’s design involves
many processes, which means the effects of an error will be localized. A
supervisor will detect the failing process, and the restart will be handled at
that level.

For that reason, you won’t find much exception-handling code in Elixir pro-
grams. Exceptions are raised, but you rarely catch them.

Use exceptions for things that are exceptional—things that should never
happen.

Exceptions do exist. This appendix is an overview of how to generate them
and how to catch them when they occur.

Raising an Exception
You can raise an exception using the raise function. At its simplest, you pass
it a string and it generates an exception of type RuntimeError.

iex> raise "Giving up"
** (RuntimeError) Giving up

erl_eval.erl:572: :erl_eval.do_apply/6

You can also pass the type of the exception, along with other optional fields.
All exceptions implement at least the message field.

iex> raise RuntimeError
** (RuntimeError) runtime error

erl_eval.erl:572: :erl_eval.do_apply/6
iex> raise RuntimeError, message: "override message"
** (RuntimeError) override message

erl_eval.erl:572: :erl_eval.do_apply/6

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

You can intercept exceptions using the try function. It takes a block of code
to execute, and optional rescue, catch, and after clauses.

The rescue and catch clauses look a bit like the body of a case function—they
take patterns and code to execute if the pattern matches. The subject of the
pattern is the exception that was raised.

Here’s an example of exception handling in action. We define a module that
has a public function, start. It calls a different helper function depending on
the value of its parameter. With 0, it runs smoothly. With 1, 2, or 3, it causes
the VM to raise an error, which we catch and report.

exceptions/exception.ex
defmodule Boom do

def start(n) do
try do
raise_error(n)

rescue
[FunctionClauseError, RuntimeError] ->

IO.puts "no function match or runtime error"
error in [ArithmeticError] ->

IO.inspect error
IO.puts "Uh-oh! Arithmetic error"
reraise "too late, we're doomed", System.stacktrace

other_errors ->
IO.puts "Disaster! #{inspect other_errors}"

after
IO.puts "DONE!"

end
end

defp raise_error(0) do
IO.puts "No error"

end

defp raise_error(val = 1) do
IO.puts "About to divide by zero"
1 / (val-1)

end

defp raise_error(2) do
IO.puts "About to call a function that doesn't exist"
raise_error(99)

end

defp raise_error(3) do
IO.puts "About to try creating a directory with no permission"
File.mkdir!("/not_allowed")

end
end

Appendix 1. Exceptions: raise and try, catch and throw • 356

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/exceptions/exception.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We define three different exception patterns. The first matches one of the two
exceptions, FunctionClauseError or RuntimeError. The second matches an ArithmeticError
and stores the exception value in the variable error. And the last clause
catches any exception into the variable other_error.

We also include an after clause. This will always run at the end of the try
function, regardless of whether an exception was raised.

Finally, look at the handling of ArithmeticError. As well as reporting the error,
we call reraise. This raises the current exception, but lets us add a message.
We also pass in the stack trace (which is actually the stack trace at the point
the original exception was raised). Let’s see all this in IEx:

iex> c("exception.ex")
[Boom]
iex> Boom.start 1
About to divide by zero
%ArithmeticError{}
Uh-oh! Arithmetic error
DONE!
** (RuntimeError) too late, we're doomed

exception.ex:26: Boom.raise_error/1
exception.ex:5: Boom.start/1

iex> Boom.start 2
About to call a function that doesn't exist
no function match or runtime error
DONE!
:ok

iex> Boom.start 3
About to try creating a directory with no permission
Disaster! %File.Error{action: "make directory", path: "/not_allowed",

reason: :eacces}
DONE!
:ok

catch, exit, and throw
Elixir code (and the underlying Erlang libraries) can raise a second kind of
error. These are generated when a process calls error, exit, or throw. All three
take a parameter, which is available to the catch handler.

Here’s an example:

report erratum • discuss

catch, exit, and throw • 357

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

exceptions/catch.ex
defmodule Catch do

def start(n) do
try do
incite(n)

catch
:exit, code -> "Exited with code #{inspect code}"
:throw, value -> "throw called with #{inspect value}"
what, value -> "Caught #{inspect what} with #{inspect value}"

end
end

defp incite(1) do
exit(:something_bad_happened)

end

defp incite(2) do
throw {:animal, "wombat"}

end

defp incite(3) do
:erlang.error "Oh no!"

end
end

Calling the start function with 1, 2, or 3 will cause an exit, a throw, or an error
to be thrown. Just to illustrate wildcard pattern matching, we handle the last
case by matching any type into the variable what.

iex> c("catch.ex")
[Catch]
iex> Catch.start 1
"Exited with code :something_bad_happened"
iex> Catch.start 2
"throw called with {:animal,\"wombat\"}"
iex> Catch.start 3
"Caught :error with \"Oh no!\""

Defining Your Own Exceptions
Exceptions in Elixir are basically records. You can define your own exceptions
by creating a module. Inside it, use defexception to define the various fields in
the exception, along with their default values. Because you’re creating a
module, you can also add functions—often these are used to format the
exception’s fields into meaningful messages.

Say we’re writing a library to talk to a Microsoft Kinect controller. It might
want to raise an exception on various kinds of communication errors. Some
of these are permanent, but others are likely to be transient and can be retried.

Appendix 1. Exceptions: raise and try, catch and throw • 358

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/exceptions/catch.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

We’ll define our exception with its (required) message field and an additional
can_retry field. We’ll also add a function that formats these two fields into a
nice message.

exceptions/defexception.ex
defmodule KinectProtocolError do

defexception message: "Kinect protocol error",
can_retry: false

def full_message(me) do
"Kinect failed: #{me.message}, retriable: #{me.can_retry}"

end

end

Users of our library could write code like this:

exceptions/defexception.ex
try do

talk_to_kinect()
rescue

error in [KinectProtocolError] ->
IO.puts KinectProtocolError.full_message(error)
if error.can_retry, do: schedule_retry()

end

If an exception gets raised, the code handles it and possibly retries:

Kinect failed: usb unplugged, retriable: true
Retrying in 10 seconds

Now Ignore This Appendix
The Elixir source code for the mix utility contains no exception handlers. The
Elixir compiler itself contains a total of five (but it is doing some pretty funky
things).

If you find yourself defining new exceptions, ask if you should be isolating
the code in a separate process instead. After all, if it can go wrong, wouldn’t
you want to isolate it?

report erratum • discuss

Now Ignore This Appendix • 359

http://media.pragprog.com/titles/elixir16/code/exceptions/defexception.ex
http://media.pragprog.com/titles/elixir16/code/exceptions/defexception.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

APPENDIX 2

Type Specifications and Type Checking
When we looked at @callback, on page 319, we saw that we defined callbacks in
terms of their parameter types and return values. For example, we might write

@callback parse(uri_info :: URI.Info.t) :: URI.Info.t
@callback default_port() :: integer

The terms URI.Info.t and integer are examples of type specifications. And, as José
Valim pointed out to me, the cool thing is that they are implemented (by Yurii
Rashkovskii) directly in the Elixir language itself—no special parsing is
involved. This is a great illustration of the power of Elixir metaprogramming.

In this appendix we’ll discuss how to specify types in Elixir. But before we
do, there’s another question to address: Why bother?

When Specifications Are Used
Elixir type specifications come from Erlang. It is very common to see Erlang
code where every exported (public) function is preceded by a -spec line. This
is metadata that gives type information. The following code comes from the
Elixir parser (which is [currently] written in Erlang). It says the return_error
function takes two parameters, an integer and any type, and never returns.

-spec return_error(integer(), any()) -> no_return().
return_error(Line, Message) ->

throw({error, {Line, ?MODULE, Message}}).

One of the reasons the Erlang folks do this is to document their code. You
can read it inline while reading the source, and you can also read it in the
pages created by their documentation tool.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The other reason is that they have tools such as dialyzer that perform static
analysis of Erlang code and report on some kinds of type mismatches.1

These same benefits can apply to Elixir code. We have the @spec module attribute
for documenting a function’s type specification; in IEx we have the s helper for
displaying specifications and the t helper for showing user-defined types. You
can also run Erlang tools such as dialyzer on compiled Elixir .beam files.

However, type specifications are not currently in wide use in the Elixir world.
Whether you use them is a matter of personal taste.

Specifying a Type
A type is simply a subset of all possible values in a language. For example,
the type integer means all the possible integer values, but excludes lists,
binaries, PIDs, and so on.

The basic types in Elixir are as follows: any, atom, float, fun, integer, list, map,
maybe_improper_list, none, pid, port, reference, struct, and tuple.

The type any (and its alias, _) is the set of all values, and none is the empty set.

A literal atom or integer is the set containing just that value.

The value nil can be represented as nil.

Collection Types
A list is represented as [type], where type is any of the basic or combined
types. This notation does not signify a list of one element—it simply says that
elements of the list will be of the given type. If you want to specify a
nonempty list, use [type, ...]. As a convenience, the type list is an alias for [any].

Binaries are represented using this syntax:

<< >>
An empty binary (size 0).

<< _ :: size >>
A sequence of size bits. This is called a bitstring.

<< _ :: size * unit_size >>
A sequence of size units, where each unit is unit_size bits long.

In the last two instances, size can be specified as _, in which case the binary
has an arbitrary number of bits/units.

1. http://www.erlang.org/doc/man/dialyzer.html

Appendix 2. Type Specifications and Type Checking • 362

report erratum • discuss

http://www.erlang.org/doc/man/dialyzer.html
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

The predefined type bitstring is equivalent to <<_::_>>, an arbitrarily sized
sequence of bits. Similarly, binary is defined as <<_::_*8>>, an arbitrary sequence
of 8-bit bytes.

Tuples are represented as { type, type,… } or using the type tuple, so both
{atom,integer} and tuple(atom,integer} represent a tuple whose first element is an
atom and whose second element is an integer.

Combining Types
The range operator (..) can be used with literal integers to create a type repre-
senting that range. The three built-in types, non_neg_integer, pos_integer, and
neg_integer, represent integers that are greater than or equal to, greater than,
or less than zero, respectively.

The union operator (|) indicates that the acceptable values are the unions of
its arguments.

Parentheses may be used to group terms in a type specification.

Structures
As structures are basically maps, you could just use the map type for them,
but doing so throws away a lot of useful information. Instead, I recommend
that you define a specific type for each struct:

defmodule LineItem do
defstruct sku: "", quantity: 1
@type t :: %LineItem{sku: String.t, quantity: integer}

end

You can then reference this type as LineItem.t.

Anonymous Functions
Anonymous functions are specified using (head -> return_type).

The head specifies the arity and possibly the types of the function parameters.
Use “. . .” to mean an arbitrary number of arbitrarily typed arguments, or a
list of types, in which case the number of types is the function’s arity.

(... -> integer) # Arbitrary parameters; returns an integer
(list(integer) -> integer) # Takes a list of integers and returns an integer
(() -> String.t) # Takes no parameters and returns an Elixir string
(integer, atom -> list(atom)) # Takes an integer and an atom and returns

a list of atoms

You can put parentheses around the head if you find it clearer:

report erratum • discuss

Specifying a Type • 363

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

(atom, float -> list)
((atom, float) -> list)
(list(integer) -> integer)
((list(integer)) -> integer)

Handling Truthy Values
The type as_boolean(T) says that the actual value matched will be of type T, but
the function that uses the value will treat it as a truthy value (anything other
than nil or false is considered true). Thus the specification for the Elixir function
Enum.count is

@spec count(t, (element -> as_boolean(term))) :: non_neg_integer

Some Examples
integer | float

Any number (Elixir has an alias for this).

[{atom, any}]
list(atom, any)

A list of key/value pairs. The two forms are the same.

non_neg_integer | {:error, String.t}
An integer greater than or equal to zero, or a tuple containing the atom
:error and a string.

(integer, atom -> { :pair, atom, integer })
An anonymous function that takes an integer and an atom and returns
a tuple containing the atom :pair, an atom, and an integer.

<< _ :: _ * 4 >>
A sequence of 4-bit nibbles.

Defining New Types
The attribute @type can be used to define new types.

@type type_name :: type_specification

Elixir uses this to predefine some built-in types and aliases. Here are just
some of them.

@type term :: any
@type binary :: <<_::_*8>>
@type bitstring :: <<_::_*1>>
@type boolean :: false | true
@type byte :: 0..255
@type char :: 0..0x10ffff

Appendix 2. Type Specifications and Type Checking • 364

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

@type charlist :: [char]
@type list :: [any]
@type list(t) :: [t]
@type number :: integer | float
@type module :: atom
@type mfa :: {module, atom, byte}
@type node :: atom
@type nonempty_charlist :: [char]
@type timeout :: :infinity | non_neg_integer
@type no_return :: none

As the list(t) entry shows, you can parameterize the types in a new definition.
Simply use one or more identifiers as parameters on the left side, and use these
identifiers where you’d otherwise use type names on the right. Then when you
use the newly defined type, pass in actual types for each of these parameters:

@type variant(type_name, type) :: { :variant, type_name, type)

@spec create_string_tuple(:string, String.t) :: variant(:string, String.t)

As well as @type, Elixir has the @typep and @opaque module attributes. They
have the same syntax as @type, and do basically the same thing. The difference
is in the visibility of the result.

@typep defines a type that is local to the module that contains it—the type is
private. @opaque defines a type whose name may be known outside the module
but whose definition is not.

Specs for Functions and Callbacks
The @spec specifies a function’s parameter count, types, and return-value
type. It can appear anywhere in a module that defines the function, but by
convention it sits immediately before the function definition, following any
function documentation.

We’ve already seen the syntax:

@spec function_name(param1_type, …) :: return_type

Let’s see some examples. These come from the built-in Dict module.

@type key :: anyLine 1

@type value :: any2

@type keys :: [key]3

@type t :: tuple | list # `t` is the type of the collection4

5

@spec values(t) :: [value]6

@spec size(t) :: non_neg_integer7

@spec has_key?(t, key) :: boolean8

@spec update(t, key, value, (value -> value)) :: t9

report erratum • discuss

Specs for Functions and Callbacks • 365

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Line 6
values takes a collection (tuple or list) and returns a list of values (any).

Line 7
size takes a collection and returns an integer (>= 0).

Line 8
has_key? takes a collection and a key, and returns true or false.

Line 9
update takes a collection, a key, a value, and a function that maps a value
to a value. It returns a (new) collection.

For functions with multiple heads (or those that have default values), you
can specify multiple @spec attributes. Here’s an example from the Enum module:

@spec at(t, index) :: element | nil
@spec at(t, index, default) :: element | default

def at(collection, n, default \\ nil) when n >= 0 do
...

end

The Enum module also has many examples of the use of as_boolean:

@spec filter(t, (element -> as_boolean(term))) :: list
def filter(collection, fun) when is_list(collection) do

...
end

This says filter takes something enumerable and a function. That function
maps an element to a term (which is an alias for any), and the filter function
treats that value as being truthy. filter returns a list.

For more information on Elixir support for type specifications, see the guide.2

Using Dialyzer
Dialyzer analyzes code that runs on the Erlang VM, looking for potential
errors. To use it with Elixir, we have to compile our source into .beam files and
make sure that the debug_info compiler option is set (which it is when running
mix in the default, development mode). Let’s see how to do that by creating
a trivial project with two source files.

$ mix new simple
...
$ cd simple

2. http://elixir-lang.org/getting-started/typespecs-and-behaviours.html#types-and-specs

Appendix 2. Type Specifications and Type Checking • 366

report erratum • discuss

http://elixir-lang.org/getting-started/typespecs-and-behaviours.html#types-and-specs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Inside the project, let’s create a simple function. Being lazy, I haven’t imple-
mented the body yet.

defmodule Simple do
@type atom_list :: list(atom)
@spec count_atoms(atom_list) :: non_neg_integer
def count_atoms(list) do

...
end

end

Let’s run dialyzer on our code. To make life simple, we’ll use the dialyxir library
to add a dialyzer task to mix:

typespecs/simple/mix.exs
defp deps do

[
{ :dialyxir, "~> 0.5", only: [:dev], runtime: false }

]
end

Fetch the library and build our project:

$ mix deps.get
$ mix compile

Now we’re ready to analyze our code. However, the first time we do this, dialyzer
needs to construct a massive data structure containing all the types and APIs
in both Erlang and Elixir. This lets it check not just our code, but also that
our code is interacting correctly with the rest of the world. Building this data
structure is slow: expect it to take 10 to 20 minutes! But once done, it won’t
be repeated.

mix dialyzer
Compiling 2 files (.ex)
warning: variable "list" is unused

lib/simple.ex:8

Generated simple app
Checking PLT...
[:compiler, :elixir, :kernel, :stdlib]
Finding suitable PLTs
Looking up modules in dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt
. . .
Checking 391 modules in dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.p
lt
Adding 48 modules to dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt

Starting Dialyzer
dialyzer args: [

check_plt: false,

report erratum • discuss

Using Dialyzer • 367

http://media.pragprog.com/titles/elixir16/code/typespecs/simple/mix.exs
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

init_plt: '/Users/dave/Work/Bookshelf/titles/elixir16/Book/code/typespecs
/simple/_build/dev/dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt',

files_rec: ['/Users/dave/Work/Bookshelf/titles/elixir16/Book/code/typespe
cs/simple/_build/dev/lib/simple/ebin'],

warnings: [:unknown]
]
done in 0m1.18s
lib/simple.ex:7: Invalid type specification for function

'Elixir.Simple':count_atoms/1. The success typing is (_) -> 'nil'
done (warnings were emitted)

Ouch! Let’s run it again:

mix dialyzer --no-check
Starting Dialyzer
dialyzer args: [
. . .
]
done in 0m1.4s

lib/simple.ex:7: Invalid type specification for function
'Elixir.Simple':count_atoms/1. The success typing is (_) -> 'nil'

done (warnings were emitted)

Those last three lines are the important ones. They’re complaining that the
typespec for count_atoms doesn’t agree with the implementation. The success
typing (think of this as the actual type)3 returns nil, but the spec says it is a
nonnegative integer. Dialyzer has caught our stubbed-out body.

Let’s fix that:

typespecs/simple/lib/simple.ex
defmodule Simple do

@type atom_list :: list(atom)
@spec count_atoms(atom_list) :: non_neg_integer
def count_atoms(list) do

length list
end

end

and run dialyzer again:

$ mix dialyzer
Compiling 1 file (.ex)
Checking PLT...

done in 0m1.34s
done (passed successfully)

3. http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf

Appendix 2. Type Specifications and Type Checking • 368

report erratum • discuss

http://media.pragprog.com/titles/elixir16/code/typespecs/simple/lib/simple.ex
http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Let’s add a second module that calls our count_atoms function:

typespecs/simple/lib/simple/client.ex
defmodule Client do

@spec other_function() :: non_neg_integer
def other_function do

Simple.count_atoms [1, 2, 3]
end

end

Compile and dialyze:

19∙18∙53≻ mix dialyzer
Compiling 1 file (.ex)
Generated simple app
Checking PLT...
done in 0m1.37s

lib/simple/client.ex:3: Function other_function/0 has no local return
lib/simple/client.ex:4: The call 'Elixir.Simple':count_atoms([1 | 2

| 3,...]) breaks the contract (atom_list()) -> non_neg_integer()
done (warnings were emitted)

That’s pretty cool. Dialyzer noticed that we called count_atoms with a list of
integers, but it is specified to receive a list of atoms. It also decided this would
raise an error, so the function would never return (that’s the no local return
warning). Let’s fix that:

defmodule Client do
@spec other_function() :: non_neg_integer
def other_function do

Simple.count_atoms [:a, :b, :c]
end

end

$ mix dialyzer
Compiling 1 file (.ex)

done in 0m1.03s
done (passed successfully)

And so it goes.…

Dialyzer and Type Inference
In this appendix, we’ve shown dialyzer working with type specs that we added
to our functions. But it also does a credible job with unannotated code. This
is because dialyzer knows the types of the built-in functions (remember the
long wait the first time we ran it) and can infer (some of) your function types
from this. Here’s a simple example:

report erratum • discuss

Using Dialyzer • 369

http://media.pragprog.com/titles/elixir16/code/typespecs/simple/lib/simple/client.ex
http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

defmodule NoSpecs do
def length_plus_n(list, n) do

length(list) + n
end
def call_it do

length_plus_n(2, 1)
end

end

Compile this, and run dialyzer:

$ mix dialyzer
...
done in 0m1.28s

lib/nospecs.ex:5: Function call_it/0 has no local return
lib/nospecs.ex:6: The call 'Elixir.NoSpecs':length_plus_n(1,2) will

never return since it differs in the 1st argument from the success
typing arguments: ([any()],number())

done (warnings were emitted)

Here it noticed that the length_plus_n function called length on its first parameter,
and length requires a list as an argument. This means length_plus_n also needs
a list argument, and so it complains.

What happens if we change the call to length_plus_n([:a, :b], :c)?

defmodule NoSpecs do
def length_plus_n(list, n) do

length(list) + n
end
def call_it do

length_plus_n([1, 2], :c)
end

end

$ mix dialyzer
done in 0m1.29s

lib/nospecs.ex:5: Function call_it/0 has no local return
lib/nospecs.ex:6: The call 'Elixir.NoSpecs':length_plus_n([1, 2],'c')

will never return since it differs in the 2nd argument from the
success typing arguments: ([any()],number())

done (warnings were emitted)

This is even cooler. It knows that + (which is implemented as a function) takes
two numeric arguments. When we pass an atom as the second parameter,
dialyzer recognizes that this makes no sense, and complains. But look at the
error. It isn’t complaining about the addition. Instead, it has assigned a default
typespec to our function, based on its analysis of what we call inside that
function.

Appendix 2. Type Specifications and Type Checking • 370

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

This is success typing. Dialyzer attempts to infer the most permissive types
that are compatible with the code—it assumes the code is correct until it finds
a contradiction. This makes it a powerful tool, as it can make assumptions
as it runs.

Does that mean you don’t need @spec attributes? That’s your call. Try it with
and without. Often, adding a @spec will further constrain a function’s type
signature. We saw this with our count_of_atoms function, where the spec made
it explicit that we expected a list of atoms as an argument.

Ultimately, dialyzer is a tool, not a test of your coding chops. Use it as such,
but don’t waste time adding specs to get a gold star.

report erratum • discuss

Using Dialyzer • 371

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Bibliography

[Arm13] Joe Armstrong. Programming Erlang (2nd edition). The Pragmatic Bookshelf,
Raleigh, NC, 2nd, 2013.

report erratum • discuss

http://pragprog.com/titles/elixir16/errata/add
http://forums.pragprog.com/forums/elixir16

Index

SYMBOLS
! (exclamation mark)

in names, 34
relaxed Boolean operator,

36
atoms, 26
raising exceptions, 139
!== strict inequality oper-

ator, 35
!= value inequality opera-

tor, 35

"" (double quotes)
atoms, 26
enclosing strings, 73,

117, 124–130, 307

""" (double quotes, triple),
heredocs, 118, 120, 348

(hash sign), preceding com-
ments, 35

#{} (string interpolation), 44

$ (dollar sign), terminal
prompt, 4

& (ampersand)
function capture opera-

tor, 48–50, 64, 76
&(&1) identity function,

295
&& relaxed Boolean opera-

tor, 36

'' (single quotes), enclosing
strings, 73, 117, 121–123,
307

''' (single quotes, triple), here-
docs, 118, 120

() (parentheses)
enclosing function argu-

ments, 41

named functions, 54, 64
nesting functions, 46
pipelines, 64
using with, 39

* (asterisk), multiplication
operator, 36

<> (angle brackets), <<>> en-
closing binaries, 362

() (parentheses), grouping type
specifications, 363

.. (range operator), 363

[] (square brackets), as nil
value, 362

_ (underscore), special vari-
able, 362

| (vertical bar), join operator,
363

+ (plus sign)
addition operator, 36
++ list concatenation,

30, 36, 81

, (comma), formatter tool and,
192

- (minus sign)
subtraction operator, 36
- - list difference, 30

-> operator, in functions, 41

. (dot notation)
anonymous function

calls, 41
maps, 32
module names and func-

tion calls, 68
nested modules, 66
nesting dictionary struc-

tures, 90
structs, 88

... (ellipsis), iex prompt, 4

/ (forward slash), division op-
erator, 36

: (colon)
atoms, 26
preceding Erlang func-

tions, 69

< (left angle bracket), less-
than operator, 35

<- operator, pattern matching
with with, 38

<<>>
comprehension genera-

tors, 113
enclosing binaries, 32

<= less-than-or-equal-to oper-
ator, 35, 102

<>
binaries concatenation,

36
enclosing binaries, 123

= (equal sign)
match operator, 15, 20
=== strict equality opera-

tor, 35
== value equality opera-

tor, 35

> (right angle bracket),
greater-than operator, 35

>= greater-than-or-equal-to
operator, 35

? (question mark)
atoms, 26
in names, 34

@ (at sign)
atoms, 26
module attributes, 67

[] (square brackets)
accessing maps, 31
c helper return value, 10
enclosing lists, 30
list creation, 16

\ (backslash), preceding es-
cape sequences, 117

\\ (backslash, double), default
parameters, 60

^ (caret), pin operator
in function parameters,

48
in pattern matching, 19,

87

_ (underscore)
in decimals, 26
list processing, 74–75
in names, 34
special variable, 18, 43,

74–75

{} (braces)
enclosing maps, 31, 88
string interpolation (#{}),

44, 117
tuples, 28

| (vertical bar)
|> pipe operator, 63, 150
|| relaxed Boolean opera-

tor, 36
join operator, 78
pipe character, lists, 71
pipelines, 2

|> pipe operator, 63, 150

~ (tilde), preceding sigils, 118

A
Access module, 93

accessors, 91

accumulator, processes, 203–
205

actor model of concurrency,
197

actors, defined, 197

add_worker, 267

addition operator, 36

after clause, try function, 356–
357

after pattern, process mes-
sages, 201

agents
about, 293
anagram example, 297–

300
distributing, 299

Fibonacci server example,
215

names, 296, 299
using, 295–297, 300
wrapping in modules,

300

algebra documents, 342–344

alias, 67, 314

aliasing
modules, 67
scope and, 314

all, 93

all?, 101

ampersand (&)
function capture opera-

tor, 48–50, 64, 76
&(&1) identity function,

295
&& relaxed Boolean opera-

tor, 36

anagram example, 123, 297–
300

and operator, 35

angle brackets (<>), <<>> en-
closing binaries, 362

anonymous functions, 41–51
about, 364
creating, 41, 363–364
exercises, 42, 45, 47, 50
multiple implementations

in, 43
nesting, 45–47
parameterized, 46
passing as arguments,

47–51
pattern matching, 42
syntax, 41–51

ANSI escape sequences, 9,
326

Ansible, 285

any type, 331, 362

any?, 101

APIs, resources on, 99

application function, 154, 279

application specification files,
278, 280

applications, see also OTP
applications

as components, 155,
242, 277

configuring, 157
organizing questions,

257–262, 275
recompiling, 150
starting, 261

starting dependencies as,
154

terminology, 155, 277
umbrella projects, 351–

354
visualizations, 189

apps directory, 351

.appup file, 287

arguments
order and function cap-

ture operator (&), 49
passing anonymous

functions as, 47–51

arithmetic operators, 36, 59

ArithmeticError, 54, 357

arity, of named functions, 54

Armstrong, Joe, 20, 256

assert, 147

assignment, pattern matching
and, 15, 20, 42

asterisk (*), multiplication
operator, 36

async, 294

at function, 93, 100, 125

at sign (@)
atoms, 26
module attributes, 67

atom type, 331

atoms
about, 26
for Boolean values, 35
module names as, 68
protocols, 331

automated deployment, 285

automated scaling, 292

availability and hot upgrades,
287

await, 294

B
backslash (\), preceding es-

cape sequences, 117

backslash, double (\\), default
parameters, 60

:bad_call error, 238

:bad_cast error, 238

Beam, see Erlang VM

.beam files, 281

@behaviour attribute, 320

behaviours, see also OTP be-
haviours

exercises, 326

Index • 376

linking modules with,
319–326

names, 34
source-code control

methods example, 319–
322

big, binary qualifier, 130

binaries
about, 32, 123, 362
binary functions, 125–

130
binary integers, 26
bit extraction, 124
comprehensions, 112
concatenating, 36
converting to integers,

148
double-quoted strings as,

124
exercises, 130–131
modifiers for, 123
overriding binary opera-

tor, 315
pattern matching, 130
qualifiers for, 130
splitting, 130
storing in binaries, 124
using, 123–132

binary type, 130

bind_quoted: option, 313

binding
explicitly maintaining,

353
injecting values with,

312, 314
macros, 312, 314
variables in nested func-

tions, 46
variables in pattern

matching, 18, 87

bit_size, 123

bits type, 130

bitstring type, 130, 331, 362–
364

bitstrings
about, 130
comprehensions, 112
protocols, 331

Boolean operators, 35, 59

Boolean values, 35, 364, 366

boundary conditions, 179

braces ({})
enclosing maps, 31, 88
string interpolation (#{}),

44, 117
tuples, 28

brackets, see square brackets

break!, 172

breakpoints, 169–173

byte_size, 123

bytes type, 130

C
c helper function, 10, 53

?c notation, 122

~C sigil, 119

~c sigil, 119

caching, Fibonacci server ex-
ample, 215

Caesar cypher, 331

Calendar library, 34

Calendar module, 33

call, 233–234, 238

@callback, 319

callbacks
defining behaviours, 319
flagging with @impl at-

tribute, 321
GenServer default, 238
tracing example, 322–326

callers, listing in mix, 186

can_retry, 358

Capistrano, 285

capitalization, see case

capitalize, 125

capture_io, 162

cards, dealing, 102

caret (^), pin operator
in function parameters,

48
in pattern matching, 19,

87

case
agents, 296
binary functions, 125,

129
conventions for, 24, 34
Erlang documentation,

69
filtering and pattern-

matching lists, 79
pattern matching, 27
strings, 24, 125, 129

case statement, 137, 311

cast, 234, 238

catch clause, try function, 356

catch function, 357

character lists
exercises, 123

sigils, 119
terminology, 120–121
using, 121–123

characters, see also character
lists

converting values into,
344

escaping, 117
integer code, 122
sigils, 119

Chars protocol, 344

check_all, 180

child specifications, 255, 295

child_list, 248

child_spec, 255, 295

children
child specifications, 255,

295
names, 267
supervision, 248, 295

classes, 1

CLI module, see GitHub
project example

closures, 46

code
binding code fragments,

313
for this book, 9
converting strings, 315
Elixir source code, 316
evaluating code frag-

ments, 314
formatting, 35, 190–193,

320
hot upgrades, 234, 282,

287
injection with macros,

304–310
recompiling source code,

234
releasing, 282–292
using representation as

code in macros, 307–
310

working with large code
examples, 44

code blocks, do block for, 36

code_change, 239, 290

codepoints, 125

Collectable API, 111

Collectable protocol, 110, 338–
340

Index • 377

collections, 99–115, see al-
so binaries; lists; maps; tu-
ples

about, 362
cards, dealing, 102
Collectable protocol, 110,

338–340
collection types, 25, 28–

33
comparing, 100
comprehensions, 111–

114
concatenating, 100
converting into lists, 100
creating, 100
enumerating, 85
exercises, 102
filtering, 100
folding elements, 101
inserting elements into,

110
iterating with for, 85
joining, 101
mapping, 100
merging, 101
predicate operations, 101
processing with Enum, 99–

103
processing with Stream,

99, 103–110
protocols, 331
selecting specific ele-

ments, 100
sorting, 100, 102
splitting, 100

colon (:)
atoms, 26
preceding Erlang func-

tions, 69

color
color constants example,

349–350
disabling colorization, 9
iex options, 8

columns, formatting table,
160

comma (,), formatter tool and,
192

command line
executable for projects,

163–164
parsing, 145–149

command pipelines,
see pipelines

comments
formatter tool and, 192
regular expressions, 27

syntax for, 35
tests based on, 173–177

comparison operators, 35, 59

compile, 280

compiling
about, 9
libraries, 153
logging options, 164
messages bug, 204
modules, 53
OTP applications, 280
recompiling, 150, 234

components
applications as, 155,

242, 277
sequence server example,

242–244

composability, streams, 103

comprehensions, 111–114

concat, 100

concatenating
binaries, 36
collections, 100
lists, 30, 36, 81

concurrency, 197–217, see
also nodes; OTP; processes

about, 11, 197
actor model, 197
exercises, 205, 209, 211,

215
Fibonacci server example,

211–215
parallel map function, 2,

210
performance, 203–205,

215
problems with multiple

core systems, ix

cond, 134–137

conditional logic vs. guard
clauses, 60

--config option, 158

config.exs file, 157

config/ directory, 144

configuration
files and directories, 144,

157
overriding default name,

158

control flow, 133–139

--cookie option, 222

cookies, 222

copying data, immutability
and, 23

count, 334, 337, 345

countdown timer example
using streams, 108–110

coupling and focal points, 258

coverex, 184

create_processes, 203

CSV, sigil exercise, 350

Ctrl - \ , exiting iex, 4
Ctrl -C , exiting iex, 4
Ctrl -G q , exiting iex, 4
curly braces, see braces

cycle function, streams, 106

cypher, Caesar, 331

D
~D sigil, 119

data
copying and immutabili-

ty, 23
immutable data as

known data, 22
transformation, GitHub

project example, 149–
162

transforming and im-
mutability, 22, 24

transforming in function-
al programming, 1–3,
22, 24, 64

transforming in produc-
tion line diagram, 142,
168

Date type, 33

dates
sigils, 119
types, 33

DateTime type, 34

dealing cards, 102

debug, 164, 235

debugging
debug trace, 235
with iex, 8, 169–173
injecting breakpoints,

170
logging message levels,

164
resources on, 173
setting breakpoints, 172

decimal integers, 26, 122

def, 53, 323

defexception, 358

defimpl, 330–332

defmacro, 305

defmodule, 53

defp, 63

Index • 378

defprotocol, 330

defstruct, 88, 332

delimiters
regular expressions, 27
sigils, 119

dependencies
adding, 152
finding, 157
loading, 157
managing with mix, 152,

186
reporting on, 186
starting, 154
visualizations, 186

deploy directory, 285

deployment
automated, 285
hot upgrades, 234, 282,

287
with ssh, 285
upgrading during, 287–

291

deps, 152

describe tool, ExUnit, 177

descriptor, for application,
277

destructuring, maps, 85

Deutsch, L. Peter, 114

development vs. production
version, 284

Dialyzer tool, 362, 366–371

Dict module, 365

dictionary types, 83–95, see
also keyword lists; maps;
sets; structs

cautions, 95
choosing, 83
defined, 83
nested accessors, 91
nesting, 89–95
using, 83–89

difference, lists, 30

dir_walker, 265

directives, module, 66

directories
application specification

files, 280
creating, 143
names, 145
OTP applications, 284
projects, 143–145
source-code formatting,

190
tests, 145, 147, 264

Distillery release manager, 169,
282–292

distributed failover, 292

distributing, agents and
tasks, 299

div operator, 36

division operator, 36

do block
scope, 36–40
shortcut, 40
syntax, 54

do: syntax, 54, 133, 324

docs, 167

doctest tool, ExUnit, 176

documentation, 354, 361, see
also resources for this book

projects, 166
sample iex sessions in,

175

dollar sign ($), terminal
prompt, 4

:done, 269

dot command, 186

dot notation (.)
anonymous function

calls, 41
maps, 32
module names and func-

tion calls, 68
nested modules, 66
nesting dictionary struc-

tures, 90
structs, 88

double quotes, heredocs ("""),
118, 120, 348

double quotes ("")
atoms, 26
enclosing strings, 73,

117, 124–130, 307

:DOWN message, 209

downcase function, 125

downgrading, 288

do…end block, 54

duck typing, 98

Duper example, 257–275
about, 257
performance, 273
questions for organizing,

257–262
sequence diagram, 260
setup, 262–272
supervision structure dia-

gram, 262
tests, 264

duplicate, 125

duplicate file example,
see Duper example

duplication
immutability and, 23
strings, 125

dynamic nested accessors, 91

dynamic supervisors, 266

E
earmark, 166

elem, 93

Elixir
about, x–xi
advantages, 1–3
basics, 25–40
code formatter, 35, 320
community support, xi,

10
compiling and running,

9
Distillery release manager,

169, 282–292
exiting, 4
formatting conventions,

10, 35
installing, 3
interactively running, 4–

10
message bug, 204
resources on, xii, 10, 151
source code, 316
versions, 3

elixir command, 10

Elixometer, 190

ellipsis (...), iex prompt, 4

else: keyword, 133

empty lists, 183

empty?, 101

end keyword, 41, 76

ends_with? function, 125

enoent error, 29

Enum module, 366
about, 99
keyword lists, 84
performance, 103
using, 99–103

Enumerable protocol, 99, 334–
338

environment, organizing
questions, 257–258, 275

equal sign (=)
match operator, 15, 20

Index • 379

=== strict equality opera-
tor, 35

== value equality opera-
tor, 35

--erl parameter, Elixir, 205

Erlang
about, ix
cookies and, 223
ETS tables and server-

monitoring tools, 188
forcing strings into Er-

lang terms, 121
functions, calling, 44, 69
libraries, finding, 69, 151
naming conventions, 69
pattern matching, 20
resources on, 69, 151
running two versions at

same time, 288
type specifications, 320,

361
using function capture

operator (&), 49

Erlang VM
hot upgrades, 234
increasing default values,

205
nodes and, 219

error function, 357

error level logging, 164

error messages
ExUnit, 147
tests, 178

errors, see also exceptions
error messages, 147, 178
logging message levels,

164
organizing questions,

257, 260, 275
raising, 357

escape, 313

escape sequences
ANSI, 326
strings, 117

escript utility, 163

ETS tables, server-monitoring
tools, 188

eval_quoted, 314, 316

eval_string, 315, 353

evaluator example of umbrella
project, 351–354

events, server-monitoring
tools, 190

.ex files, 9, 44

except clause, overriding sigils,
348

except: parameter, import direc-
tive, 67

exceptions, 355–359
catching, 357
defining, 358
designing with, 138
exiting, 357
pattern matching, 356,

358
raising, 138, 355–357
re-raising, 357
throwing, 357

exclamation mark (!)
in names, 34
relaxed Boolean operator,

36
atoms, 26
raising exceptions, 139
!== strict inequality oper-

ator, 35
!= value inequality opera-

tor, 35

excoveralls tool, 184–186

ExDoc, 166

exercises
about, 10
adding dependencies,

153
anonymous functions,

42, 45, 47
behaviours, 326
binaries, 130–131
character lists, 123
collections, 102
comprehensions, 114
concurrency, 205, 209,

211, 215
control flow, 139
functions, 42, 45, 47,

50, 55, 57, 62, 70
GitHub project example,

148, 153, 160
guard clauses, 326
libraries, 70
lists and recursion, 77,

81
macros, 311, 316, 326
modules, 55, 70
multiple processes, 205,

209, 211, 215
named functions, 62
nodes, 221, 226–227
OTP applications, 282,

292
OTP servers, 233, 237,

244

OTP supervisors, 250,
254

pattern matching, 18–19
project organization,

148, 153
protocols, 331, 345
resources for, 10
sigils, 350
strings, 123, 130–131
tests, 148, 316
weather fetching project,

168

exit
exceptions, 357
iex, 4
preventing in mix, 273
trapping, 208

exit function, 357

:EXIT message, 208

.exs files, 9, 44

extended mode, regular ex-
pressions, 27

ExUnit
about, 146
code-quoting exercise,

316
doctest tool, 176
GitHub project tests, ba-

sic, 146–149
GitHub project tests,

comments, 173–177
GitHub project tests, for-

matting, 161
GitHub project tests,

sorting, 159
property-based tests,

179–183
resources on, 179, 183
setup feature, 178
structuring tests, 177–

179

F
f option, regular expressions,

27

factorial implementation ex-
ample, 55, 60

failover, distributed, 292

@fallback_to_any syntax, 331

false Boolean value, 35

fetch project, see GitHub
project example

fetchable?, 320

Fibonacci examples
server example, 211–215
unfolding streams, 107

Index • 380

file extensions, 9, 44

File module, Elixir, 44

File module, Erlang, 44

files, see also Duper example
file extensions, 9, 44
loading, 10
naming conventions, 9
project directory, 143–

145
tests, 145, 147
traversal, 265

filter, 100

filters
collections, 100
comprehensions, 112
StreamData, 183

first function, 126

fixtures, 179

FizzBuzz example, 45, 134–
137, 139

flatten, 81

flattening, lists, 81

float type, 130, 331

floating-point numbers
about, 26, 364
as binaries, 124
jaro_distance function, 126
pattern matching, 130
protocols, 331
sigil exercise, 350

fn keyword, 41, 76

focal points
defined, 258
organizing questions,

257–258, 275

folding
collection elements into

single value, 101
lists, 81

foldl, 81

foldr, 81

for, iterating with, 85

format, 190, 320

format_error, 44

format_status, 237, 239

.formatter.exs file, 144

formatting
code formatter, 35, 320
conventions, 10
output formatter, 166
source-code formatting,

190–193
tables, 160–162

forward slash (/), division op-
erator, 36

fragments, code
binding, 313
evaluating, 314

Frequency module example, 296

fully qualified names, nodes,
219

function capture operator (&),
48–50, 64, 76

function type, 331

functional programming
vs. object-oriented pro-

gramming, 1, 11
thinking about, 11
as transforming data, 1–

3, 22, 24, 64

FunctionClauseError, 357

functions, see also helper
functions; named func-
tions; protocols; tasks

agents, 295
anonymous functions,

41–51
binary functions, 125–

130
creating, 41
as data transformers, 3
dictionary-access, 90
differentiating between

Elixir and Erlang, 44
dynamic nested acces-

sors, 91
Erlang, calling, 44, 69
exercises, 42, 45, 47, 50,

55, 57, 62, 70
guard clauses, 137
help files, 6
listing unknown in mix,

186
looping functions and

timeouts, 272
nested module functions,

accessing, 65
nesting, 45–47
parallel processing, 3
parameterized, 46
passing as a key, 92
passing as arguments,

47–51
pattern matching, 42
private, 63
recursive lists, 72–82
server-monitoring tools,

190
specs for, 365–366
syntax, 4, 6, 41–51

as a type, 25
updating, 263

:functions atom, import directive,
67

G
g option, regular expressions,

27

garbage collection, ix, 23

generators
comprehensions, 111
registering PIDs, 223

GenServer
about, 230
adding behaviour with
use, 231, 238

default callbacks, 238
overriding defaults, 255
sequence server example,

231–237, 240–244
when to use, 300

get, 153–154, 295

get_and_update_in, 91–94

get_env, 281

get_in, 91–94

get_status, 236

GitHub project example
adding libraries to, 151–

156
API for fetching issues,

141
command line, parsing,

145–149
command-line executable

for, 163–164
comments, 173–177
configuring URLs, 157
converting JSON list, 156
directory tree for, 143–

145
documentation for, 166
exercises, 148, 153, 160
extracting issues from

list, 159
fetching data, 149–162
formatting table, 160–162
libraries for, 151
logging for, 164–166
overview, 141–142
project, creating, 142–

145
sorting data, 158
tests for, 146–149, 159,

161, 173–186
version control for, 144

.gitignore file, 144

Index • 381

global names, agents, 296,
299

graphemes, binary functions,
125–128

graphemes function, 126

greater-than-or-equal-to oper-
ator (>=), 35

greediness, 27, 103

group leader, for nodes, 221,
227

group_leader function, 227

guard clauses
case, 137
vs. conditional logic, 60
exercises, 326
multiple processes, 204
using, 58–60

H
h helper function, 5–6

Hackney library, 157

handle_call, 232, 238–239

handle_cast, 234, 238

handle_info, 238–239, 271

hash sign (#), preceding com-
ments, 35

head
building lists, 74
pattern-matching com-

plex lists, 78–81
processing lists, 72–74
splitting from binaries,

130
understanding lists, 29,

71

Hello, World example
creating, 9
understanding processes,

198–202

help, 143

help files
functions, 6
mix, 143

helper functions
c helper, 10, 53
function capture operator

(&), 48–50, 64, 76
iex, 5–8

heredocs, 118, 120, 348

hex, 151, 157

hexadecimal integers, 26

:hibernate, 239

horizontal space, removal by
formatter, 192

hot upgrades, 234, 282, 287

HTTPoison library, 151–156,
277

hungry consumer model, 260

hygiene and macros, 313–314

I
i helper function, 7

i option, regular expressions,
27

identity function, 295

IEEE 754 double precision,
26

iex
calling source files, 44
customizing, 8
debugging with, 8, 169–

173
exiting, 4
helper functions, 5–8
lists display in, 73
running, 4–10
sample sessions in docu-

mentation, 175
starting servers manual-

ly, 232
uses, 8
working with large code

examples, 44

iex.exs file, 8

if
control flow, 133
macro example, 303, 310

immutability, 21–24, see al-
so state

@impl attribute, 321

import, 66, 162, 314

import_config, 158

import_file, 10

importing
configuration, 158
files, 10
modules, 66, 162
printing and, 162
scope and, 314

in operator, 30, 36, 59

indentation, 10, 35

infinite streams, 105

info level logging, 164

init
GenServer default call-

backs, 238
OTP servers, 231

starting workers before
initialization, 269

supervisors, 267

inspect, 329, 332, 340–345

Inspect protocol, 330, 340–344

installation, Elixir, 3

integer type, 130, 331

integers
about, 26, 364
as binaries, 124
code, 122
converting strings to, 148
lists display in iex, 73
pattern matching, 130
protocols, 331
range of, representing,

363

into function, 338–340

into: parameter, comprehen-
sions, 113

I/O servers, 226–227

issues project example,
see GitHub project example

iterate function, streams, 106

iteration
collections, 85
comprehensions, 112
streams, 106
timers, 214

J
jaro_distance function, 126

join function, 101

join operator (|), 78, 363

join operators
guard clauses, 59
strings, 36

joining
collections, 101
lists, 78
strings, 36

JSON, reformatting respons-
es, 156

K
Kernel module

macros with same name,
324

removing operator defini-
tions, 315

resources on, 316

Kerr, Jessica, 22

key function, 94

key! function, 94

Index • 382

key/value pairs, see also dic-
tionary types

adding new key to a map,
87

keyword lists, 30
maps, 31

keydelete, 81

KeyError, 32

keyfind, 81

keyreplace, 81

keys
adding new key to a map,

87
passing functions as, 92
updating, 263

keyword lists
about, 30, 84, 97
choosing, 83
comprehensions, 112
vs. maps, 31
nested accessors, 91
parameters, 281
primitive vs. functional,

97

Keyword module, 84, 97

killing, processes, 206–210,
see also termination

kwlist, 84

L
~l sigil, 347

last function, 126

laziness, streams, 103–110

length, 126

less-than-or-equal-to operator
(<=), 35, 102

lexical scope, modules, 66

lib/ directory, 144–145

libraries
adding, 151–156
compiling, 153
directories, 144–145
exercises, 70
finding, 69, 151
resources on, 69, 151,

227
starting, 154
using, 151–153

LineSigil module, 347, 352

linking
modules with behaviours,

319–326
processes, 207, 209, 247
subprojects, 353

Lisp, 29

List module, 81, 97, 121

list type, 331

List.Chars protocol, 344

lists, see also character lists;
keyword lists

about, 25, 29, 97, 362,
364

building, 74
as child specifications,

255
comprehension, 111–114
concatenating, 30, 36, 81
converting collections to,

100
converting into functions,

49
creating, 16
difference of, 30
displaying in iex, 73
empty, 75, 183
exercises, 77, 81
filtering, 78–81
flattening, 81
folding, 81
functions, 81
inserting elements into,

111
joining, 78
length of, 72
of lists, 78–81
mapping values to a new

list, 75
membership, 30
ordering, 30, 135
pattern matching, 16–

20, 72–73, 75, 78–81
performance, 30, 135
pipe character (|) in, 71
primitive vs. functional,

97
processing, 72–74, 78
processing multiple val-

ues in, 78
protocols, 331
recursion, 71–82
reducing, 76–78
replacing items in, 81
swapping values in, 78
updating, 81

little, binary qualifier, 130

load charts, 188

local hostname, OS X and,
220

local names
agents, 296
OTP servers, 240
processes, 240

logging
debug trace, 235
GitHub project example,

164–166
message levels, 164
sequence server project,

290

looping functions and time-
outs, 272

M
m option, regular expressions,

27

macros, 303–316
binding, 312, 314
cautions, 303
defining, 305, 324
exercises, 311, 316, 326
importing from modules,

66
load order, 306
overriding operators, 315
requiring, 67
resources on, 316
scope, 313
understanding, 304–310
using representation as

code, 307–310

:macros atom, import directive,
67

main_module:, 163

make_ref, 28

map
collections, 100
creating function for lists,

75
FizzBuzz example, 136
passing anonymous

functions as argu-
ments, 47

Map API, 84

maps, see also structs
about, 25, 31, 84, 97
accessing, 31
choosing, 83
collections, 100
destructuring, 85
vs. keyword lists, 31
nested accessors, 91
pattern matching, 85–87
primitive vs. functional,

97
protocols, 331
searching, 85–87
sets, 95
updating, 87, 263

MapSet module, 95

Index • 383

match operator (=), 15, 20

MatchError exception, 139

matching, see pattern match-
ing

max, 100

max_by, 100

member?, 101, 334, 337

membership, lists, 30

memory
garbage collection, 23
hibernating servers and,

239
organizing questions,

258–259
past limits on, ix
restarting server after

crash, 250
server-monitoring tools,

189

merging, collections, 101

message attribute, 138

message field, exceptions, 355,
358

messages
bug, 204
exceptions, 138, 355, 358
ExUnit, 147
handle_info and, 239
sending between process-

es, 198–202, 204
server-monitoring tools,

190
system messages in de-

bug trace, 236

metadata, module attributes,
67

metaprogramming, 11

methods, tracing example,
322–326

MIDI example of protocols,
333–345

migrating, server state, 288–
291

min_length, 183

minus sign (-)
subtraction operator, 36
- - list difference, 30

mix
about, 142
adding libraries, 151–156
application specification

file, creating, 278
configuring OTP applica-

tions, 278–280

creating projects, 142–
145

loading dependencies,
157

logger, adding, 164–166
managing dependencies,

152, 186
packaging code, 163
preventing exit, 273
recompiling application

with, 150
resources on, 143
running tests, 147
-S option, 155, 232
source-code control

methods, 319
source-code formatting,

190
tasks list, 143
umbrella projects, 351–

354

mix xref functions, 186

mix.exs file, 143, 145, 151

Mnesia, 229

mod: option, 279

modules, 53–70, see also pro-
tocols

about, 53, 65
aliasing, 67
application entry points,

279
attributes, 67
child_spec, 255
compiling, 53
creating, 53
directives, 66
exercises, 55, 70
help files, 6
importing functions and

macros, 66
linking with behaviours,

319–326
location, 145
macros load order, 306
names, 34, 68, 145, 240
nesting, 65
requiring, 67
resources on, 69
running two versions at

same time, 288
scope, 36, 66
syntax, 54
wrapping agents and

tasks in, 300
wrapping structs, 88
wrapping with module

functions, 240

monitoring, processes, 208,
247

multi-app projects, see um-
brella projects

multiple processes, running,
see concurrency

multiplication operator, 36

myers_difference function, 126

N
~n for newline in strings, 121

~N sigil, 119

NaiveDateTime type, 34

--name option, nodes, 219

name: option, nodes, 240

named functions, 53–70
about, 53
arity, 54
creating, 53
default parameters, 60–

63
exercises, 62
function capture operator

(&), 50
guard clauses, 58–60
importing from modules,

66
module prefix for, 65
name conventions, 53
pattern matching, 55–58
pipe operator with, 63
private, 63
syntax, 54

names
agents, 296, 299
applications, registering,

280
behaviours, 34
case and, 24
children, 267
directories, 145
Erlang functions, 69
file extensions, 9, 44
local, 240, 296
local hostname and OS

X, 220
modules, 34, 68, 145,

240
named functions, 53
naming conventions, 34,

44, 53, 69
nodes, 219
OTP applications, 280
OTP servers, 240
overriding default config

file name, 158
processes, 223–226, 240

Index • 384

processes in OTP, 240
projects, 145
protocols, 34
records, 34
resources on, 69
source files, 9, 44
tests, 147
variables, 34

National Oceanic and Atmo-
spheric Administration, 168

native, binary qualifier, 130

neg_integer type, 363

negation operators, 59

Nerves project, xi

nesting
accessors, 91
anonymous functions,

45–47
comprehensions, 111
dictionary types, 89–95
modules, 65
pattern matching, 137
structs, 89–95

new_map, 87

newline characters
regular expressions, 27
single-quoted strings,

121

next_codepoint, 127

next_grapheme, 127

nil value, 35, 362

--no-halt flag, 273

nodes, 219–228, see also OTP
about, 219
agents, 295, 299
connecting, 220, 299
exercises, 221, 226–227
group leader for, 221,

227
hierarchy of, 221
I/O server, 226–227
names, 219
naming processes, 223–

226
number in PID, 221
running multiple, 220
security, 222

non_neg_integer type, 363–364

none type, 362

nonempty, 183

not operator, 35

notifications
process deaths, 206–210
server notification exam-

ple, 223–226

O
object-oriented programming,

vs. functional program-
ming, 1, 11

:observer tool, 187–190

octal integers, 26

on_exit, 179

:one_for_all supervision strategy,
251, 268

:one_for_one supervision strate-
gy, 251, 267

online resources, see re-
sources for this book

only: parameter, import direc-
tive, 67

@opaque attribute, 365

open, 44

Open Telecom Platform,
see OTP

open!, 139

operators
about, 35
guard clauses, 59
list of, 35
overriding with macros,

315

options parsing, 145

or operator, 35

order
comparison operators, 35
function capture operator

(&), 49
list reversal, 135
lists, 30, 135
macros, 306
named functions and

pattern matching, 57

OS X, local hostname and,
220

OTP, see also Duper example;
OTP applications; OTP
servers; OTP supervisors

about, 208, 229, 292
agents, 295–300
tasks, 293–295, 297–300

OTP applications, 277–292
about, 229
compiling, 280
configuring, 278–280
creating, 278
directory structure for,

284
entry points, 279
exercises, 282, 292
hot upgrades, 282, 287

names, 280
parameters, 281
processes in, 229
registering, 280
releasing code, 282–292
sequence server example,

278–292
specification files for,

278, 280
terminology, 155, 277
upgrading while deploy-

ing, 287–291
versioning, 283–284,

287, 290

OTP behaviours
about, 229
declaring, 320
defined, 319
defining, 319
server (GenServer), 230–

231, 238
supervisor, 230, 247

OTP servers, 229–245
about, 230
exercises, 233, 237, 244
GenServer behavior for,

230–231, 238
GenServer callback func-

tions, 238
hibernating, 239
making into component,

242–244
naming, 240
one-way calls, 234
organizing by characteris-

tics, 259
passing and returning

tuples, 233
processes in, naming,

240
recompiling, 234
replacing without stop-

ping, 239
sequence server example,

230–237, 240–244,
248–255, 278–292

start order, 261
starting manually, 232
state managing, 230, 238
statistics, 235
status display, 239
supervision strategy,

251, 266–267
tasks as, 294
terminating, 239, 244
tracing execution, 235–

237
understanding, 230–237

Index • 385

when to use, 300
writing basic, 230–237

OTP supervisors, 247–256
about, 230, 255
creating, 248
defined, 247
dynamic supervisors, 266
exercises, 250, 254
managing process state

across restarts, 250–
254

reliability, 255, 281
restarting after termina-

tion, 249
sequence server example,

248–255, 278–292
starting servers in order,

261
subsupervisor, 261
supervision strategy,

251, 266–267
tasks, 294
worker restart options,

254

output formatter, 166

P
+P parameter, Erlang VM, 205

packaging, projects, 163–164

pad_leading, 127

pad_trailing, 127

padding strings, 127

parallel map function, 2, 210

parallel processing, 2–3, see
also concurrency

parameterized functions, 46

parameters
default, 60–63
keyword lists, 281
pinned values and, 48

parentheses (())
enclosing function argu-

ments, 41
grouping type specifica-

tions, 363
named functions, 54, 64
nesting functions, 46
pipelines, 64
using with, 39

Parser module, 122

parsing, character lists, 122

pattern matching, 15–20
anonymous functions, 42
assignment and, 15, 20,

42
binaries, 130

binding variables, 18
case and, 27, 79
case construct, 137
character lists, 121
comprehensions, 111
cond macro, 136
default parameters, 60–

63
defined, 17
exceptions, 356, 358
exercises, 18–19
forcing variable values,

19
functions, 42
guard clauses, 58–60
ignoring values, 18
inside patterns, 80
lists, 16–20, 72–73, 75,

78–81
maps, 85–87
named functions, 55–58
nesting, 137
OTP servers, 233
pinned values, 48
process messages, 199
regular expressions op-

tions, 27
replacing strings, 128
strings, 128, 130
structs, 88
tuples, 29
understanding, 15–20
wildcards, 18, 43, 358
with with, 37–40

PCRE, 27

performance
double-quoted strings,

124
Duper, 273
Enum module, 103
garbage collection, 23
immutability and, 23
list reversal, 135
lists, 30, 135
processes, 203–205, 215
streams, 105

Perl 5–compatible regular ex-
pressions, 27

:permanent restart option, 254

persistence, 215

Phoenix, xi

PID
calling, 28
defined, 28, 198
I/O server, 226–227
implementing protocols,

330

naming processes, 223–
226

node number, 221
parallel map function,

210
registering, 223, 226
tuples, 29

PID type, 331

pin operator (^)
in function parameters,

48
in pattern matching, 19,

87

pinned values, 48

Pinterest, 190

pipe operator (|>), 63, 150

pipelines
about, 2
lists, 71
named functions, 63
pipe operator (|>), 63, 150

plus sign (+)
addition operator, 36
++ list concatenation,

30, 36, 81

pmap, 2, 210

poison library, 156

polymorphism
protocols and, 345
structs and, 89

pop, 94

port type, 331

ports
defined, 28
port type, 331

pos_integer type, 363

precision, floats, 26

primitive data types, 97

printable?, 127

private functions, 63

process identifier, see PID

Process_monitor function, 209

processes, see also concurren-
cy; OTP supervisors

about, 3, 11
creating, 203
exercises, 205, 209, 211,

215
Fibonacci server example,

211–215
garbage collection, 23
increasing default values,

205
killing, 206–210

Index • 386

linking, 207, 209, 247
managing process state

across restarts, 250–
254

monitoring, 208, 247
naming, 223–226, 240
naming in OTP, 240
parallel map function,

210
performance, 203–205,

215
PID for, 198
running on different

nodes, 221
sending messages be-

tween, 198–202, 204
starting, 198
suspending, 209
termination messages,

239
trapping exit of, 208
understanding, 198–202

production vs. development
version, 284

Programming Erlang, 256

project function, 166

projects, see also GitHub
project example

adding libraries to, 151–
156

command-line executable
for, 163–164

configuring, 157
creating, 142–145
creating documentation

for, 166
directory tree for, 143–

145
logger, adding, 164–166
names, 145
organizing, 141–168
packaging, 163–164
source-code formatting,

190
subprojects, 351, 353
umbrella projects, 351–

354

property-based testing, 179–
183

protocols, 329–345
about, 114
built-in, 333–345
defined, 329
defining, 329
exercises, 331, 345
implementing, 330–332
names, 34
as polymorphism, 345

structs and, 332
types available to imple-

ment, 331

pry, 170

pull model, 260

push model, 259

put_in, 90

put_new, 87

puts
help files, 6
PIDs and nodes, 227

Q
question mark (?)

atoms, 26
in names, 34

questions for organizing appli-
cations, 257–262, 275

Quixir, 180

quotation marks, see double
quotes; single quotes

quote, 305–306, 311–312, 314

R
r command, 234

~R sigil, 119

~r sigil, 27, 119

race conditions, monitoring
processes, 209

raise, 138, 355–357

raising, exceptions, 138, 355–
357

range operator (..), 363

ranges, 26–27, 33

Rashkovskii, Yurii, 361

README.md file, 144

real, 180

receive, 199–202

records
names, 34
protocols and, 331

recursion
exercises, 77, 81
guard clauses for, 58
lists, 71–82
with named functions, 56
sending messages be-

tween processes, 202
tail recursion, 202

reduce
accumulator example,

204
collection elements, 101

exercises, 345
protocols example, 334–

337

reducing
accumulator example,

204
collection elements into

single value, 101
exercise, 345
lists, 76–78
protocols example, 334–

337

reductions value, debug trace,
236

references, 28, 331

Regex module, 28

registered: option, 280

registering
applications, 280
PIDs, 223, 226

regular expressions
about, 26
options, 27
sigils, 119
splitting strings, 128
writing, 27

reject, 100

releases
code, 282–292
defined, 282
Distillery release manager,

169, 282–292
downgrading versions,

288
generating, 283–285
production version, 284

reliability, OTP supervisors,
255, 281

rem operator, 36

remainder operator, 36

repeatedly function, streams,
106

replace, 128

replace_at, 81

reply, 232

representation, using as code,
307–310

require Logger, 166

require directive, 67, 166, 306

reraise, 357

rescue clause, try function, 356

resource, 105, 107–110

resources
streaming, 105, 107–110

Index • 387

success typing, 368
system messages, 236
type specifications, 366

resources for this book
algebra documents, 344
APIs, 99
code files, 9
debugging, 173
Elixir, xii, 10, 151, 316
Elixir source code, 316
Erlang, 69, 151
exercises, 10
ExUnit, 179, 183
guard clauses, 59
Kernel module, 316
libraries, 69, 151, 227
macros, 316
mix, 143
modules, 69
naming conventions, 69
operator macros, 316
quote, 314
sys module, 236
tasks, 295
type-check functions, 59

:rest_for_one supervision strate-
gy, 252

:restart option, 254

restarts
managing process state

across, 250–254
server after crash, 250
worker restart options,

254

reverse, 128, 135

run
about, 145
data-transformation ex-

ample, 149
multiple processes, 204
scheduler example, 213

running, organizing questions
and, 257, 261, 275

runtime
logging options, 165
nested accessors, 91
organizing questions,

257, 259, 275

RuntimeError, 138, 355, 357

Russell, Cody, 215

S
s helper function, 362

-S option, mix, 155, 232

s option, regular expressions,
27

~S sigil, 119

~s sigil, 119

say, 109

scaling, automated, 292

scheduler, Fibonacci server
example, 211–215

scope
comprehensions, 113
local scope, 37
macros, 313
modules, 36, 66
quoted fragments, 314
sigils, 348–349
understanding, 36–40
variables, 36–40, 46

SCOWL, 331

security, nodes, 222

self, 28, 199

send, 199–202, 239

send sender..., 199

send_after, 270

separation of logic and imple-
mentation, sequence server
example, 242–244

sequence server example
basic, 230–237
interface cleanup, 240–

244
OTP application, 278–292
supervisors, 248–255

servers, see also OTP servers
migrating server state,

288–291
organizing by characteris-

tics, 259
server notification exam-

ple, 223–226
server-monitoring tools,

187–190
start order, 261
starting manually, 232

sets, 95

setup function, 178

setup_all function, 179

setups, testing, 178

sigil_C, 348

sigil_R, 348

sigil_S, 348

sigil_W, 348

sigil_c, 348

sigil_r, 348

sigil_s, 347–348

sigil_w, 348

sigils, 118–120, 347–354

signed, binary qualifier, 130

:simple_one_for_one supervision
strategy, 266

single quotes, heredocs ('''),
118, 120

single quotes (''), enclosing
strings, 73, 117, 121–123,
307

size, binary qualifier, 130

skipping generated values,
183

slice, 128, 334, 337

--sname option, nodes, 219

sort, 100, 102, 158

sort_into_descending_order, 159

sorting
collections, 100, 102
data in GitHub project

example, 158

source files
calling, 44
names, 9, 44

source-code control methods
example, 319–322

source-code formatting, 190–
193

spawn, 198, 204, 221

spawn_link, 207, 209

spawn_monitor, 209

@spec attribute, 362, 365–
366, 371

special variable (_), 18, 43,
74–75

specification files, application,
278, 280

split, 100, 128

split_while, 100

splitting
binaries, 130
collections, 100
strings, 127–128, 130

square brackets ([])
accessing maps, 31
c helper return value, 10
enclosing lists, 30
list creation, 16
as nil value, 362

ssh, 285

stack trace, 357

start, 248, 281

start_link
about, 232

Index • 388

agents example, 296
defaults, 255
init and, 238
linking tasks, 294
sequence server example,

240
supervision, 249, 267
tracing server execution,

235

starting
applications, 261
organizing questions and,

257, 261, 275
processes, 198
restarting server after

crash, 250
servers manually, 232
workers, 268–269

starts_with?, 129

state
agents, 295–297
hibernating servers and,

239
immutability in Elixir,

21–24
managing process state

across restarts, 250–
254

migrating server state,
288–291

naming processes, 226
in object-oriented pro-

gramming, 1
OTP servers, 230, 238
unfolding streams, 107
versioning and, 283

statistics, debug trace, 235

:statistics option, 235

Stream
about, 99
creating streams, 105–

110
using, 103–110

StreamData, 180–183

streams
about, 99
collectable, 111
as composable enumera-

tors, 103
countdown timer exam-

ple, 108–110
creating, 103, 105–110
infinite, 105
performance, 105
processing collections,

103–110
shortcut for, 105

streaming external re-
sources, 105, 107–110

unfolding, 105, 107
when to use, 110

string interpolation, 117,
344, 348

String module, 125–130

String.Chars protocol, 344

string_to_quoted, 315

strings
about, 25
case, 24, 125, 129
codepoints in, 125
comprehensions, 112
converting to another

string, 126
converting to code, 315
converting to integers,

148
converting values into,

344
displaying in iex, 73
double-quoted, 73, 117,

124–130, 307
duplicating, 125
escape sequences, 117
evaluating directly, 315
exercises, 123, 130–131
extracting elements from,

125–126
function capture operator

(&), 49
heredocs, 118
interpolation, 44, 117,

344, 348
length of, 126
padding, 127
pattern matching, 128,

130
prefixes of, 129
printability of, 127
replacing elements in,

128
reversing, 128
sigils, 119
similarity of two strings,

126
single-quoted, 73, 117,

121–123, 307
slicing, 128
splitting, 127–128, 130
substrings of, 128
suffix of, testing, 125
terminology, 120
trimming, 129
understanding, 117–123
validity of, 130

structs
about, 25, 88
cautions, 95
defining, 363
nesting, 89–95
pattern matching, 88
protocols and, 332
updating, 88

subprojects
creating, 351
linking, 353

subsupervisor, 261

subtraction operator, 36

success typing, 368, 371

sum, 76

--sup flag, 248

supervision strategy, 251,
266–267

supervisors, see OTP supervi-
sors

suspending, processes, 209

swap, 78

sys module, 236

system information, monitor-
ing, 187–190

system messages, debug
trace, 236

system types, 25, 28

T
t helper function, 362

-t option for ssh, 286

~T sigil, 119

Taarnskov, Lau, 34

tables
formatting, 160–162
server-monitoring tools

for Erlang ETS tables,
188

tail
about, 29, 71
building lists, 74
processing lists, 72–74
splitting from binaries,

130
tail-call optimization, 202

take, 100, 159, 337

take_every, 100

take_while, 100

tasks
anagram example, 297–

300
defined, 293
distributing, 299

Index • 389

mix, 143
resources on, 295
using, 293–295
when to use, 300
wrapping in modules,

300

Tate, Bruce, 3

tc library, 204, 214

templates, test files, 147

:temporary restart option, 254

terminal sessions, 4

terminate, 239, 252

termination
messages, 239
OTP servers, 239, 244
processes, 206–210, 294
supervision strategy, 251
tasks, 294

test coverage, 184–186

test task, 147

test/ directory, 145, 147

tests
Duper example, 264
exercises, 148, 316
file extensions for, 9
files and directories, 145,

147, 264
GitHub project, basic,

146–149
GitHub project, com-

ments, 173–177
GitHub project, format-

ting, 161
GitHub project, sorting,

159
names, 147
property-based, 179–183
setups, 178
structuring, 177–179,

264
test coverage, 184–186

Theseus, 291

threads, 3, 197

throw, 357

tilde (~), preceding sigils, 118

Time type, 34

timeout parameter, 239

timeouts
GenServer, 238–239
looping functions and,

272
messages between pro-

cesses, 201

timers, example of, 108–110,
204, 214

times
sigils, 119
types, 33

timestamps, debug trace, 236

to_charlist, 344

to_integer, 148

to_list, 100

to_process, 214

to_string, 315, 345

Torres, Devin, 210

tracing
methods call example,

322–326
OTP server execution,

235–237
stack trace, 357

transforming
|> operator, 64
data and immutability,

22, 24
data in functional pro-

gramming, 1–3, 22,
24, 64

data production line dia-
gram, 142, 168

data, GitHub project ex-
ample, 149–162

pipelines for, 2

:transient restart option, 255,
272

trapping process exit, 208

trim, 129

trim_leading, 129

trim_trailing, 129

true Boolean value, 35

truthy values, 35, 364, 366

try, 356

tuple type, 363

tuples
about, 28, 363
accessing in lists, 81
converting into functions,

49
pattern matching, 29
protocols, 331

@type attribute, 364–365

type checking, 362, 366–371

type inference, 369–371

type specifications, 320, 361–
366

type-check functions, guard
clauses, 59

typed maps, see structs

#Typename prefix, 340

@typep attribute, 365

types, see also dictionary
types

aliases for, 364
built-in, 25–34, 364
collection, 25, 28–33
collections, 362
combining, 363
dates and times, 33
defined, 362
list, 362
local to modules, 365
new, defining, 364–365
primitive vs. functional,

97
protocols that can be im-

plemented for, 331
system types, 25, 28
type specifications, 320
type-check functions, 59
understanding, 97
value, 25–28

U
U option, regular expressions,

27

u option, regular expressions,
27

--umbrella flag, 351

umbrella projects, 351–354

unary operator, overriding,
315

underscore (_)
in decimals, 26
list processing, 74–75
in names, 34
special variable, 18, 43,

74–75, 362

unfold, 105, 107

ungreedy option, 27

Unicode, regular expressions,
27

union operator (|), 363

unless, 133

unquote, 305, 309, 311

unquote_splicing, 310

unsigned, binary qualifier, 130

upcase, 129

update, 263, 295

update_in, 90

updating
agents, 295
functions, 263
hot upgrades, 282, 287

Index • 390

lists, 81
maps, 87, 263
nested dictionary struc-

tures, 90
structs, 88

upgrades
downgrading, 288
during deployment, 287–

291
hot upgrades, 234, 282,

287
version numbers, 287,

290

_upto, 135

URLs, configuring, 157

use
about, 322
GenServer, 231, 238
linking modules with be-

haviours, 319–326
overriding defaults, 255
tasks, 295

__using__, 322, 325, 349

UTF strings, binaries and, 33

UTF-8 encoding, 124, 130

utf8 type, 130

utf16 type, 130

utf32 type, 130

V
valid?, 130

Valim, José, 180, 215, 361

values
atom names, 27
converting into charac-

ters, 344
converting into strings,

344
explicitly maintaining

bindings, 353
folding elements into sin-

gle, 101
forcing in pattern match-

ing, 19
help files, 7
injecting with bindings,

312, 314
injecting with unquote, 309
inspecting protocol, 340–

344

mapping values to a new
list, 75

pattern matching, 15–20
pinned values, 48
property-based tests,

180–183
returned by comprehen-

sions, 113
skipping generated, 183
swapping, 78
updating, 263
value types, 25–28

var!, 314

variables
_ special variables, 18,

43, 74–75
assignment, 15
binding in functions, 46
binding in pattern

matching, 18, 87
comprehensions, 111
forcing value in pattern

matching, 19
immutability of, 22
local scope, 37
names, 34
pattern matching, 15–20
scope, 36–40, 46

version control, 144

versions
adding libraries, 152
downgrading, 288
Elixir, 3
OTP applications, 283–

284, 287, 290
running two versions at

same time, 288
upgrades, 287, 290

vertical bar (|)
join operator, 363
|> pipe operator, 63, 150
|| relaxed Boolean opera-

tor, 36
join operator, 78
pipe character, lists, 71
pipelines, 2

virtual machine, see Erlang
VM

visualizations
dependencies, 186

load charts, 188
running applications, 189

@vsn directive, 283

W
~w

formatting strings as Er-
lang term, 121

sigil, 119

~W sigil, 119

warn level logging, 164

warnings, listing in mix, 186

weather fetching project, 168

website resources, see re-
sources for this book

when keyword, guard clauses,
58–60

whitespace
regular expressions, 27
sigils, 119
trimming from strings,

129

wildcards, pattern matching,
18, 43, 358

with expression, using, 37–40

with_index, 101

workers
about, 270
adding, 267
hungry consumer model,

260
OTP supervisors and, 247
push model, 259
restart options, 254
specifying, 255
starting, 254, 268–269

wrapping
agents and tasks in mod-

ules, 300
function capture operator

(&), 50
modules, 240
structs, 88

X
x option, regular expressions,

27

xref functions, 186

Z
zip, 101

Index • 391

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

A Better Web with Phoenix and Elm
Elixir and Phoenix on the server side with Elm on the front end gets you the best of both
worlds in both worlds!

Programming Phoenix ≥ 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert, as you build the next generation of web ap-
plications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

https://pragprog.com/book/phoenix14
https://pragprog.com/book/jfelm

Dive Deep in to OTP and Absinthe
Put it all together with Elixir, OTP, and Phoenix. Dive into GraphQL for better APIs in Elixir.
It’s all here.

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

https://pragprog.com/book/lhelph
https://pragprog.com/book/wwgraphql

Fix Your Hidden Problems
From technical debt to deployment in the very real, very messy world, we’ve got the tools
you need to fix the hidden problems before they become disasters.

Software Design X-Rays
Are you working on a codebase where cost overruns,
death marches, and heroic fights with legacy code
monsters are the norm? Battle these adversaries with
novel ways to identify and prioritize technical debt,
based on behavioral data from how developers work
with code. And that’s just for starters. Because good
code involves social design, as well as technical design,
you can find surprising dependencies between people
and code to resolve coordination bottlenecks among
teams. Best of all, the techniques build on behavioral
data that you already have: your version-control sys-
tem. Join the fight for better code!

Adam Tornhill
(274 pages) ISBN: 9781680502725. $45.95
https://pragprog.com/book/atevol

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/atevol
https://pragprog.com/book/mnee2

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, from design to daily practice.

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/mkdsa
https://pragprog.com/book/rjnsd

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/elixir16
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/elixir16

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/elixir16
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/elixir16
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword
	A Vain Attempt at a Justification, Take Two
	Acknowledgments

	1. Take the Red Pill
	Programming Should Be About Transforming Data
	Installing Elixir
	Running Elixir
	Suggestions for Reading the Book
	Exercises
	Think Different(ly)

	Part I—Conventional Programming
	2. Pattern Matching
	Assignment: I Do Not Think It Means What You Think It Means.
	More Complex Matches
	Ignoring a Value with _ (Underscore)
	Variables Bind Once (per Match)
	Another Way of Looking at the Equals Sign

	3. Immutability
	You Already Have (Some) Immutable Data
	Immutable Data Is Known Data
	Performance Implications of Immutability
	Coding with Immutable Data

	4. Elixir Basics
	Built-in Types
	Value Types
	System Types
	Collection Types
	Maps
	Binaries
	Dates and Times
	Names, Source Files, Conventions, Operators, and So On
	Variable Scope
	End of the Basics

	5. Anonymous Functions
	Functions and Pattern Matching
	One Function, Multiple Bodies
	Functions Can Return Functions
	Passing Functions as Arguments
	Functions Are the Core

	6. Modules and Named Functions
	Compiling a Module
	The Function’s Body Is a Block
	Function Calls and Pattern Matching
	Guard Clauses
	Default Parameters
	Private Functions
	The Amazing Pipe Operator: |>
	Modules
	Module Attributes
	Module Names: Elixir, Erlang, and Atoms
	Calling a Function in an Erlang Library
	Finding Libraries

	7. Lists and Recursion
	Heads and Tails
	Using Head and Tail to Process a List
	Using Head and Tail to Build a List
	Creating a Map Function
	Reducing a List to a Single Value
	More Complex List Patterns
	The List Module in Action
	Get Friendly with Lists

	8. Maps, Keyword Lists, Sets, and Structs
	How to Choose Between Maps, Structs, and Keyword Lists
	Keyword Lists
	Maps
	Pattern Matching and Updating Maps
	Updating a Map
	Structs
	Nested Dictionary Structures
	Sets
	With Great Power Comes Great Temptation

	9. An Aside—What Are Types?
	10. Processing Collections—Enum and Stream
	Enum—Processing Collections
	Streams—Lazy Enumerables
	The Collectable Protocol
	Comprehensions
	Moving Past Divinity

	11. Strings and Binaries
	String Literals
	The Name “strings”
	Single-Quoted Strings—Lists of Character Codes
	Binaries
	Double-Quoted Strings Are Binaries
	Binaries and Pattern Matching
	Familiar Yet Strange

	12. Control Flow
	if and unless
	cond
	case
	Raising Exceptions
	Designing with Exceptions
	Doing More with Less

	13. Organizing a Project
	The Project: Fetch Issues from GitHub
	Step 1: Use Mix to Create Our New Project
	Transformation: Parse the Command Line
	Write Some Basic Tests
	Refactor: Big Function Alert
	Transformation: Fetch from GitHub
	Step 2: Use Libraries
	Transformation: Convert Response
	Transformation: Sort Data
	Transformation: Take First n Items
	Transformation: Format the Table
	Step 3: Make a Command-Line Executable
	Step 4: Add Some Logging
	Step 5: Create Project Documentation
	Coding by Transforming Data

	14. Tooling
	Debugging with IEx
	Testing
	Code Dependencies
	Server Monitoring
	Source-Code Formatting
	Inevitably, There’s More

	Part II—Concurrent Programming
	15. Working with Multiple Processes
	A Simple Process
	Process Overhead
	When Processes Die
	Parallel Map—The “Hello, World” of Erlang
	A Fibonacci Server
	Agents—A Teaser
	Thinking in Processes

	16. Nodes—The Key to Distributing Services
	Naming Nodes
	Naming Your Processes
	Input, Output, PIDs, and Nodes
	Nodes Are the Basis of Distribution

	17. OTP: Servers
	Some OTP Definitions
	An OTP Server
	GenServer Callbacks
	Naming a Process
	Tidying Up the Interface
	Making Our Server into a Component

	18. OTP: Supervisors
	Supervisors and Workers
	Worker Restart Options
	Supervisors Are the Heart of Reliability

	19. A More Complex Example
	Introduction to Duper
	The Duper Application
	But Does It Work?
	Planning Your Elixir Application
	Next Up

	20. OTP: Applications
	This Is Not Your Father’s Application
	The Application Specification File
	Turning Our Sequence Program into an OTP Application
	Supervision Is the Basis of Reliability
	Releasing Your Code
	Distillery—The Elixir Release Manager
	OTP Is Big—Unbelievably Big

	21. Tasks and Agents
	Tasks
	Agents
	A Bigger Example
	Agents and Tasks, or GenServer?

	Part III—More Advanced Elixir
	22. Macros and Code Evaluation
	Implementing an if Statement
	Macros Inject Code
	Using the Representation as Code
	Using Bindings to Inject Values
	Macros Are Hygienic
	Other Ways to Run Code Fragments
	Macros and Operators
	Digging Deeper
	Digging Ridiculously Deep

	23. Linking Modules: Behavio(u)rs and use
	Behaviours
	use and __using__
	Putting It Together—Tracing Method Calls
	Use use

	24. Protocols—Polymorphic Functions
	Defining a Protocol
	Implementing a Protocol
	The Available Types
	Protocols and Structs
	Built-in Protocols
	Protocols Are Polymorphism

	25. More Cool Stuff
	Writing Your Own Sigils
	Multi-app Umbrella Projects
	But Wait! There’s More!

	A1. Exceptions: raise and try, catch and throw
	Raising an Exception
	catch, exit, and throw
	Defining Your Own Exceptions
	Now Ignore This Appendix

	A2. Type Specifications and Type Checking
	When Specifications Are Used
	Specifying a Type
	Defining New Types
	Specs for Functions and Callbacks
	Using Dialyzer

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

