As Deep Neural Networks (DNNs) become increasingly common in real-world applications, the potential to fool them presents a new attack vector. In this book, author Katy Warr examines the security implications of how DNNs interpret audio and images very differently to humans. You’ll learn about the motivations attackers have for exploiting flaws in DNN algorithms and how to assess the threat to systems incorporating neural network technology. Through practical code examples, this book shows you how DNNs can be fooled and demonstrates the ways they can be hardened against trickery.
Description:
As Deep Neural Networks (DNNs) become increasingly common in real-world applications, the potential to fool them presents a new attack vector. In this book, author Katy Warr examines the security implications of how DNNs interpret audio and images very differently to humans. You’ll learn about the motivations attackers have for exploiting flaws in DNN algorithms and how to assess the threat to systems incorporating neural network technology. Through practical code examples, this book shows you how DNNs can be fooled and demonstrates the ways they can be hardened against trickery.